Exercise 9.

Figure 19. Each side of the equation (4+1)4∑i=1i2=4∑i=1i3+4∑p=1p∑i=1i2 is the area of the rectangle.
Exercise 10. Let k = 1 in Figure 7. Then each side of the equation (n+1)n∑i=1i=n∑i=1i2+n∑p=1p∑i=1i
is the area of the rectangle. Letting k = 1 in the equation (n+1)n∑i=1ik=n∑i=1ik+1+n∑p=1p∑i=1ik
gives the equation (n+1)n∑i=1i=n∑i=1i2+n∑p=1p∑i=1i or
(n+1)(1+2+3+⋯+n)= (12+22+32+⋯+n2)+n∑p=1(1+2+3+⋯+p) or
12+22+32+⋯+n2= (n+1)(1+2+3+⋯+n)−n∑p=1(1+2+3+⋯+p) or 12+22+32+⋯+n2=(n+1)(n(n+1)2)−n∑p=1p(p+1)2=(n+1)(n(n+1)2)−12n∑p=1p2−12n∑p=1p=(n+1)(n(n+1)2)−12(12+22+32+⋯+n2)
−12(1+2+3+⋯+n)
or 32(12+22+32+⋯+n2)=(n+1)(n(n+1)2)−12n(n+1)2=(n+12)(n(n+1)2) or 12+22+32+⋯+n2=n(n+1)(2n+1)6.
Exercise 11. Let k = 2 in Figure 7. Then each side of the equation (n+1)n∑i=1i2=n∑i=1i3+n∑p=1p∑i=1i2
is the area of the rectangle. Letting k = 2 in the equation (n+1)n∑i=1ik=n∑i=1ik+1+n∑p=1p∑i=1ik
gives the equation (n+1)n∑i=1i2=n∑i=1i3+n∑p=1p∑i=1i2 or
(n+1)(12+22+32+⋯+n2)= (13+23+33+⋯+n3)+n∑p=1(12+22+32+⋯+p2) or
13+23+33+⋯+n3= (n+1)(12+22+32+⋯+n2)−n∑p=1(12+22+32+⋯+p2).
If we now apply the formula for the sum of the squares, the equation becomes
13+23+33+⋯+n3=(n+1)(n(n+1)(2n+1)6)−n∑p=1p(p+1)(2p+1)6 =(n+1)(n(n+1)(2n+1)6)−13n∑p=1p3−12n∑p=1p2−16n∑p=1p
=(n+1)(n(n+1)(2n+1)6)−13(13+23+33+⋯+n3)
−12(12+22+32+⋯+n2)−16(1+2+3+⋯+n).
Collecting sums of cubes and applying the formula for the sum of the squares again, we have
43(13+23+33+⋯+n3)= (n+1)(n(n+1)(2n+1)6)−12n(n+1)(2n+1)6−16n(n+1)2 or 13+23+33+⋯+n3=34(n(n+1)12(2(n+1)(2n+1)−(2n+1)−1))=14(n(n+1)4((2n+1)2−1))=14(n(n+1)4(4n2+4n)) or 13+23+33+⋯+n3=(n(n+1)2)2.
Exercise 12.
(n5+15)n(n+12)((n+1)n−13)=15(n+1)n(12)(2n+1)((n+1)n−13)=n(n+1)(2n+1)6(35(n+1)n−15).