Loading [MathJax]/jax/output/HTML-CSS/jax.js

You are here

Sums of Powers of Positive Integers - Solutions to Exercises 9-12

Author(s): 
Janet Beery (University of Redlands)

Exercise 9.

Diagram after al-Haytham

Figure 19. Each side of the equation (4+1)4i=1i2=4i=1i3+4p=1pi=1i2 is the area of the rectangle.

Exercise 10. Let k = 1 in Figure 7. Then each side of the equation (n+1)ni=1i=ni=1i2+np=1pi=1i

is the area of the rectangle. Letting k = 1 in the equation (n+1)ni=1ik=ni=1ik+1+np=1pi=1ik

gives the equation (n+1)ni=1i=ni=1i2+np=1pi=1i or

(n+1)(1+2+3++n)= (12+22+32++n2)+np=1(1+2+3++p) or

12+22+32++n2= (n+1)(1+2+3++n)np=1(1+2+3++p) or 12+22+32++n2=(n+1)(n(n+1)2)np=1p(p+1)2=(n+1)(n(n+1)2)12np=1p212np=1p=(n+1)(n(n+1)2)12(12+22+32++n2)

12(1+2+3++n)

or 32(12+22+32++n2)=(n+1)(n(n+1)2)12n(n+1)2=(n+12)(n(n+1)2) or 12+22+32++n2=n(n+1)(2n+1)6.

Exercise 11. Let k = 2 in Figure 7. Then each side of the equation (n+1)ni=1i2=ni=1i3+np=1pi=1i2

is the area of the rectangle. Letting k = 2 in the equation (n+1)ni=1ik=ni=1ik+1+np=1pi=1ik

gives the equation (n+1)ni=1i2=ni=1i3+np=1pi=1i2 or

(n+1)(12+22+32++n2)= (13+23+33++n3)+np=1(12+22+32++p2) or

13+23+33++n3= (n+1)(12+22+32++n2)np=1(12+22+32++p2).

If we now apply the formula for the sum of the squares, the equation becomes

13+23+33++n3=(n+1)(n(n+1)(2n+1)6)np=1p(p+1)(2p+1)6 =(n+1)(n(n+1)(2n+1)6)13np=1p312np=1p216np=1p

=(n+1)(n(n+1)(2n+1)6)13(13+23+33++n3)

12(12+22+32++n2)16(1+2+3++n).

Collecting sums of cubes and applying the formula for the sum of the squares again, we have

43(13+23+33++n3)= (n+1)(n(n+1)(2n+1)6)12n(n+1)(2n+1)616n(n+1)2 or 13+23+33++n3=34(n(n+1)12(2(n+1)(2n+1)(2n+1)1))=14(n(n+1)4((2n+1)21))=14(n(n+1)4(4n2+4n)) or 13+23+33++n3=(n(n+1)2)2.

Exercise 12.

(n5+15)n(n+12)((n+1)n13)=15(n+1)n(12)(2n+1)((n+1)n13)=n(n+1)(2n+1)6(35(n+1)n15).

Janet Beery (University of Redlands), "Sums of Powers of Positive Integers - Solutions to Exercises 9-12," Convergence (July 2010), DOI:10.4169/loci003284

Sums of Powers of Positive Integers