Loading [MathJax]/jax/output/HTML-CSS/jax.js

You are here

Sums of Powers of Positive Integers - Solutions to Exercises 7-8

Author(s): 
Janet Beery (University of Redlands)

Exercise 7.

C:\Documents and Settings\HP_Owner\My Documents\Online magazine\Convergence articles\Beery article\jb18.jpg

Figure 18. (1 + 2 + 3 + 4)2 = 13 + 23 + 33 + 43

(1+2+3+4)2=(1+2+3)2+(24(1+2+3)+42)(Step 1)

=(1+2+3)2+(24342+42)

=(1+2+3)2+(42(3+1))

=(1+2+3)2+43

=(1+2)2+(23(1+2)+32)+43(Step 2)

=(1+2)2+(23232+32)+43

=(1+2)2+(32(2+1))+43

=(1+2)2+33+43

=1+(221+22)+33+43(Step 3)

=1+(222)+33+43

(1+2+3+4)2=13+23+33+43

Each cubic term represents a gnomon. In particular, 13, 23, 33, and 43 are, respectively, the areas of the yellow, green, blue, and red gnomons in Figure 18.

Exercise 8. 14+24+34++n4=15n5+12n4+c3n3+c2n2+c1n+c0,

where c3+c2+c1+c0=1(15+12)=310.

Three possible formulas are

15n5+12n4+110n3+110n2+110n,

15n5+12n4+15n3+110n,and

15n5+12n4+15n3+115n2+130n.

The correct formula is 14+24+34++n4=15n5+12n4+13n3130n.

Surprised?

Janet Beery (University of Redlands), "Sums of Powers of Positive Integers - Solutions to Exercises 7-8," Convergence (July 2010), DOI:10.4169/loci003284

Sums of Powers of Positive Integers