Loading [MathJax]/jax/output/HTML-CSS/jax.js

You are here

Sums of Powers of Positive Integers - Solutions to Exercises 21-22

Author(s): 
Janet Beery (University of Redlands)

Exercise 21. According to Bernoulli’s formula,

n4=14+1n4+1+12n4+42An41+432234Bn43=15n5+12n4+4216n3+(130)n=15n5+12n4+13n3130n

and

n5=15+1n5+1+12n5+52An51+543234Bn53=16n6+12n5+5216n4+52(130)n2=16n6+12n5+512n4112n2.

Students may have noticed already that, since A = 1/6, the coefficient of nc – 1 is c/12. According to Bernoulli’s formula,

n11=111+1n11+1+12n11+112An111+11.10.92.3.4Bn113+11.10.9.8.72.3.4.5.6Cn115

+11.10.9.8.7.6.52.3.4.5.6.7.8Dn117+11.10.9.8.7.6.5.4.32.3.4.5.6.7.8.9.10En119

=112n12+12n11+11216n10+11.10.92.3.4(130)n8+11.10.9.8.72.3.4.5.6142n6

+11.10.92.3.4(130)n4+112566n2

=112n12+12n11+1112n10118n8+116n6118n4+512n2.

Exercise 22. According to Bernoulli’s formula,

n12=112+1n12+1+12n12+122An121+12.11.102.3.4Bn123+12.11.10.9.82.3.4.5.6Cn125

+12.11.10.9.8.7.62.3.4.5.6.7.8Dn127+12.11.10.9.8.7.6.5.42.3.4.5.6.7.8.9.10En129

+12.11.10.9.8.7.6.5.4.3.22.3.4.5.6.7.8.9.10.11.12Fn1211

=113n13+12n12+12216n11+12.11.102.3.4(130)n9+12.11.10.9.82.3.4.5.6142n7

+12.11.10.92.3.4.5(130)n5+12.112.3566n3+Fn

=113n13+12n12+n11116n9+227n73310n5+53n3+Fn,

where 113+12+1116+2273310+53+F=1,

or

F=1210+1365+27305005+85809009+45502730=273034212730=6912730,

whence

n12=113n13+12n12+n11116n9+227n73310n5+53n36912730n.

Janet Beery (University of Redlands), "Sums of Powers of Positive Integers - Solutions to Exercises 21-22," Convergence (July 2010), DOI:10.4169/loci003284

Sums of Powers of Positive Integers