Exercise 21. According to Bernoulli’s formula,
∫n4=14+1n4+1+12n4+42An4−1+4⋅3⋅22⋅3⋅4Bn4−3=15n5+12n4+42⋅16n3+(−130)n=15n5+12n4+13n3−130n
and
∫n5=15+1n5+1+12n5+52An5−1+5⋅4⋅32⋅3⋅4Bn5−3=16n6+12n5+52⋅16n4+52(−130)n2=16n6+12n5+512n4−112n2.
Students may have noticed already that, since A = 1/6, the coefficient of nc – 1 is c/12. According to Bernoulli’s formula,
∫n11=111+1n11+1+12n11+112An11−1+11.10.92.3.4Bn11−3+11.10.9.8.72.3.4.5.6Cn11−5
+11.10.9.8.7.6.52.3.4.5.6.7.8Dn11−7+11.10.9.8.7.6.5.4.32.3.4.5.6.7.8.9.10En11−9
=112n12+12n11+112⋅16n10+11.10.92.3.4(−130)n8+11.10.9.8.72.3.4.5.6⋅142n6
+11.10.92.3.4(−130)n4+112⋅566n2
=112n12+12n11+1112n10−118n8+116n6−118n4+512n2.
Exercise 22. According to Bernoulli’s formula,
∫n12=112+1n12+1+12n12+122An12−1+12.11.102.3.4Bn12−3+12.11.10.9.82.3.4.5.6Cn12−5
+12.11.10.9.8.7.62.3.4.5.6.7.8Dn12−7+12.11.10.9.8.7.6.5.42.3.4.5.6.7.8.9.10En12−9
+12.11.10.9.8.7.6.5.4.3.22.3.4.5.6.7.8.9.10.11.12Fn12−11
=113n13+12n12+122⋅16n11+12.11.102.3.4(−130)n9+12.11.10.9.82.3.4.5.6⋅142n7
+12.11.10.92.3.4.5(−130)n5+12.112.3⋅566n3+Fn
=113n13+12n12+n11−116n9+227n7−3310n5+53n3+Fn,
where 113+12+1−116+227−3310+53+F=1,
or
F=1−210+1365+2730−5005+8580−9009+45502730=2730−34212730=−6912730,
whence
∫n12=113n13+12n12+n11−116n9+227n7−3310n5+53n3−6912730n.