You are here

Kepler and the Rhombic Dodecahedron: Investigation Links

Author(s): 
Roberto Cardil (matematicasVisuales)

Formation of cuboctahedron by cutting corners off a cube.

TO INVESTIGATE    Kepler: The Volume of a Wine Barrel.

To learn more about Kepler’s contribution to the development of calculus, read this article published in Convergence in 2011.

 

 

Honeycomb

TO INVESTIGATE   A property of minima in honeycombs.

Using derivatives, we can solve an isoperimetric problem that interested 18th-century mathematicians such as Colin Maclaurin (1698–1708):

We want to close a hexagonal prism as bees do, using three congruent rhombi. What is the shape of the three such rhombi with minimum total surface area?

 

 

Formation of cuboctahedron by cutting corners off a cube.

TO INVESTIGATE     Properties of the cuboctahedron.

A cuboctahedron is an Archimedean solid. It can be visualized as made by cutting off the corners of a cube. We study some of its properties. This beautiful polyhedron is used as a decoration in art and jewelry.

 

 

Model of a trapezo-rhombi dodecahedron.

TO INVESTIGATE     The trapezo-rhombic dodecahedron.

The trapezo-rhombic dodecahedron is a polyhedron that also tessellates space. It has twelve faces, but six of them are trapezoids

 

 

 

TO INVESTIGATE   

More about Leonardo da Vinci’s drawings of polyhedra for Luca Pacioli's book De divina proportione, with video animations.

Image of stellated octahedron by da Vinci.

Leonardo da Vinci: Drawing of an stellated octahedron (stella octangula) made for Luca Pacioli's De divina proportione.

Drawing by da Vinci of cuboctahedron.

Leonardo da Vinci: Drawing of a cuboctahedron made for Luca Pacioli's De divina proportione.

 

Drawing by da Vinci of augmented rhombicuboctahedron.

Leonardo da Vinci: Drawing of an augmented rhombicuboctahedron made for Luca Pacioli's De divina proportione.

 

 

Maraldi angle of a rhombic dodecahedron.

TO INVESTIGATE     Angles of the rhombic faces of a rhombic dodecahedron.

We need some basic trigonometry to calculate angles of the faces of the rhombic dodecahedron. The obtuse angle is called a Maraldi Angle. It was named after Giacomo Maraldi (1665–1729), the first mathematician to study and publish about the angles of the rhombi at the bottom of bee cells.

 

 

Image relating rhombic dodecahedron to sphere-packing density.

TO INVESTIGATE     Density of the optimal sphere packing.

Using what we now know about the volume of the rhombic dodecahedron and its space-tessellation property, we can also calculate the density of the optimal sphere packing, using the rhombic dodecahedron as a unit cell.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Space holder.

Roberto Cardil (matematicasVisuales), "Kepler and the Rhombic Dodecahedron: Investigation Links," Convergence (March 2022)