Print references:
1. Avital, S. (1995). History of mathematics can help improve instruction and learning. In F. J. Swetz, J. Fauvel, O. Bekken, B. Johansson & V. Katz (Eds.), Learn from the masters! (pp. 3-12). Washington, DC: Mathematical Association of America.
2. Lumpkin, B. (1996). From Egypt to Benjamin Bannaker: African origins of false position solutions. In R. Calinger (Ed.), Vita mathematica (pp. 279-289). Washington, DC: Mathematical Association of America.
3. Meavilla, V. (2000). Historia de las Matemáticas: métodos no algebraicos para la resolución de problemas. SUMA. Revista sobre la enseñanza y el aprendizaje de las Matemáticas, nº 34, pp. 81-85.
4. Meavilla, V (2001). Aspectos históricos de las matemáticas elementales. Zaragoza, Spain: Prensas Universitarias de Zaragoza.
5. Rickey, V. F. (1996). The necessity of history in teaching mathematics. In R. Calinger (Ed.), Vita mathematica (pp. 251-256). Washington, DC: Mathematical Association of America.
6. Stevin, S. (1583). Problematum geometricorum. Antverpiae, Apud Ioannem Bellerum.
7. Swetz, F. J. (1995). Using problems from the history of mathematics in classroom instruction. In F. J. Swetz, J. Fauvel, O. Bekken, B. Johansson & V. Katz (Eds.), Learn from the masters! (pp. 25-38). Washington, DC: Mathematical Association of America.
8. Winicki, G. (2000). The analysis of regula falsi as an instance for professional development of elementary school teachers. In V. Katz (Ed.), Using history to teach mathematics: An international perspective (pp. 129-133). Washington, DC: Mathematical Association of America.
Online references:
1. Biographies of Simon Stevin
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Stevin.html
http://www.divulgamat.net/weborriak/Historia/MateOspetsuak/Stevin.asp (in Spanish)
http://www.bbc.co.uk/history/historic_figures/stevin_simon.shtml
2. Works of Simon Stevin
http://www.library.tudelft.nl/ws/a/resources_guide/treacutesor/digital_works/principal_works_stevin/index.htm