You are here

Robert Murphy: Mathematician and Physicist - Bibliography

Author(s): 
Anthony J. Del Latto (Columbia University) and Salvatore J. Petrilli, Jr. (Adelphi University)

References

[Allaire 2002] Allaire, P. (2002). “Where was Robert Murphy 1833-1835? Or Did Murphy Meet George Green?,” Proceedings of Canadian Society for History and Philosophy of Mathematics, 15, 9 - 12.

[Allaire and Bradley 2002] Allaire, P. and Bradley, R. (2002). “Symbolic Algebra as a Foundation for Calculus: D. F. Gregory’s Contribution,” Historia Mathematica, 29, 395-426.

[Arbogast 1800] Arbogast, L. F. A. (1800). Du calcul des dérivations. Strasbourg: LeVrault Fréres.

[Barry 1986] Barry, D. (1986). “Robert Murphy: Mathematician of True Genius,” Mallow Field Club Journal, Issue 4, 5 - 11.

[Barry 1999] Barry, N. (1999). “Mallow’s Prodigy – Robert Murphy,” Mallow Field Club Journal, Issue 16, 157 - 175.

[Bonnycastle 1813] Bonnycastle, J. (1813). A Treatise on Algebra, in Practice and Theory, in Two Volumes, with Notes and Illustrations; containing a Variety of Particulars Relating to the Discoveries and Improvements that have been made in this Branch of Analysis (Third Edition). London: J. Johnson and Co. (Available on Google Books.)

[Bradley and Petrilli 2010] Bradley, R. E. and Petrilli, S. J. (2010). “Servois’ 1814 Essay on the Principles of the Differential Calculus, with an English Translation,” Convergence, 7:
http://www.maa.org/publications/periodicals/convergence/servois-1814-essay-on-the-principles-of-the-differential-calculus-with-an-english-translation

[Cauchy 1821] Cauchy, A.-L. (1821). Cours d’analyse. Paris: de Bure. English translation by R. E. Bradley and C. E. Sandifer (2009). Cauchy’s Cours d’analyse: An Annotated Translation. New York: Springer.

[Cooper 1894] Copper, T. (1894). “Murphy, Robert (1806-1843),” in S. Lee (Ed.), Dictionary of National Biography, New York: Macmillian and Co., XXXIX. 343.

[Creedon 2001] Creedon, L. (2001). “Robert Murphy 1806-43.” In K. Houston (Ed.), Creators of Mathematics: The Irish Connection. (pp. 21-26). Dublin: University College Dublin Press.

[Cross 1985] Cross, J. J. (1985). “Integral Theorems in Cambridge Mathematical Physics, 1830-55.” In P. M. Harman (Ed.), Wranglers and Physicists: Studies on Cambridge Mathematical Physics in the Nineteenth Century. Manchester: Manchester University Press.

[De Morgan 1915] De Morgan, A. (1915). A Budget of Paradoxes. D. E. Smith, (Ed.). Chicago: The Open Court Publishing Co.

[De Morgan 1864] De Morgan, A. (1864). “A Budget of Paradoxes.” In J. Francis, The Athenæum: Journal of Literature, Science, and the Fine Arts, 1919, pp. 181-182.

[Elrington 1822] Elrington, T. (1822). The First Six Books of the Elements of Euclid, with Notes. Dublin: Printed at the University Press. (Available on Google Books.)

[Euler 1770] Euler, L. (1770). Vollständige Anleitung zur Algebra. St. Petersburg: bey der Kayserlichen Akademie der Wissenschaften. English Translation by J. Hewlett (1822). Elements of Algebra, By Leonard Euler, Translated from the French; with the Additions of La Grange and the notes of the French Translator. London: J. Johnson and Co. (Available on Google Books.)

[Fourier 1830] Fourier, J. (1830). Analyse des Équations Déterminées. Paris: Chez Firmin Didot Fréres, Libraires. (Available on Google Books.)

[Gauss 1815] Gauss, C. F. (1815). Methodus nova integralium valores per approximationem inveniendi. Gottingae: Apvd Henricvm Dieterich. (Available on Gallica.)

[Grattan-Guinness 1985] Grattan-Guinness, I. (1985). “Mathematics and Mathematical Physics from Cambridge, 1815-40: A Survey of the Achievements and of the French Influences.” In P. M. Harman (Ed.), Wranglers and Physicists: Studies on Cambridge Mathematical Physics in the Nineteenth Century (pp. 84-111). Manchester: Manchester University Press.

[Gonville and Caius College Matriculation Book] Gonville and Caius College Matriculation Book. Reference number: TUT/01/01/02. Housed within the Archives of Gonville and Caius College, p. 546.

[Katz 2009] Katz, V. (2009). A History of Mathematics: An Introduction (Third Edition). Boston, MA: Addison-Wesley.

[Lagrange 1797] Lagrange, J. (1797). Théorie des fonctions analytiques. Paris: L’Imprimerie de la République. Second edition, Paris: Vve. Courciet, 1813.

[Laplace 1802] Laplace, P. S. (1802). Mécanique Céleste (Volume III). Paris: Gauthier-Villars.

[Long 1846] Long, G. (1846). “Murphy, Robert,” The Supplement to the Penny Cyclopædia of the Society for the Diffusion of Useful Knowledge, II, 337- 338.

[Miller 2010] Miller, J. (2010). Earliest Known Uses of Some of the Words of Mathematics. Retrieved July 14, 2011, from http://jeff560.tripod.com/mathword.html.

[Murphy 1824] Murphy, R. (1824). Refutation of a Pamphlet Written by the Rev. John Mackey Entitled “A Method of Making a Cube a Double of a Cube, Founded on the Principles of Elementary Geometry,” wherein His Principles Are Proved Erroneous and the Required Solution Not Yet Obtained. Mallow: John Haynes, Printer, Spa-Walk. The authors have provided their transcription of this work, with commentary, as an appendix available here.

[Murphy 1830] Murphy, R. (1830). “On the General Properties of Definite Integrals,” Transactions of the Cambridge Philosophical Society, 3, 429-443. (Available on Google Books.)

[Murphy 1831] Murphy, R. (1831). “On the Resolution of Algebraical Equations,” Transactions of the Cambridge Philosophical Society, 4, 126-153. (Available on Google Books.)

[Murphy 1832a] Murphy, R. (1832). “On Elimination between an Indefinite Number of Unknown Quantities,” Transactions of the Cambridge Philosophical Society, 5, 65-75. (Available on Google Books.)

[Murphy 1832b] Murphy, R. (1832). “First Memoir on the Inverse Method of Definite Integrals, with Physical Applications,” Transactions of the Cambridge Philosophical Society, 4, 353-408. (Available on Google Books.)

[Murphy 1833a] Murphy, R. (1833). Elementary Principles of the Theories of Electricity, Heat, and Molecular Actions. Part I on Electricity. Cambridge: Pitt Press. (Available on Google Books.)

[Murphy 1833b] Murphy, R. (1833). “On the Existence of Real or Imaginary Root to Any Equation,” Philosophical Magazine, 2, 60-61. (Available on Google Books.)

[Murphy 1833c] Murphy, R. (1833). “On the Real Functions of Imaginary Quantities,” Philosophical Magazine, 2, 287-288. (Available on Google Books.)

[Murphy 1833d] Murphy, R. (1833). “On the Mathematical Laws of Electrical Influence,” Philosophical Magazine, 2, 350-351. (Available on Google Books.)

[Murphy 1833e] Murphy, R. (1833). “Further Development of the Existence of a Real or Imaginary Root to Any Equation,” Philosophical Magazine, 2, 220-221. (Available on Google Books.)

[Murphy 1833f] Murphy, R. (1833). “Second Memoir on the Inverse Method of Definite Integrals, with Physical Applications,” Transactions of the Cambridge Philosophical Society, 5, 113-148. (Available on Google Books.)

[Murphy 1835b] Murphy, R. (1835). “Third Memoir on the Inverse Method of Definite Integrals, with Physical Applications,” Transactions of the Cambridge Philosophical Society, 5, 315-393. (Available on Google Books.)

[Murphy 1835a] Murphy, R. (1835). “On the Resolution of Equations in Finite Differences,” Transactions of the Cambridge Philosophical Society, 6, 92- 106. (Available on Google Books.)

[Murphy 1837a] Murphy, R. (1837). “Analysis of the Roots of Equations,” Philosophical Transactions of the Royal Society of London, 127, 161-178. (Available on JSTOR.)

[Murphy 1837b] Murphy, R. (1837). “First Memoir on the Theory of Analytic Operations,” Philosophical Transactions of the Royal Society of London, 127, 179-210. (Available on JSTOR.)

[Murphy 1837c] Murphy, R. (1837). “On a New Theorem in Analysis,” Philosophical Magazine, 10, 28-32. (Available on Google Books.)

[Murphy 1837d] Murphy, R. (1837). “On the Composition of Two Rectangular Forces Acting on a Point,” Philosophical Magazine, 10, 105-108. (Available on Google Books.)

[Murphy 1837e] Murphy, R. (1837). “Remark on an Error of Fourier in his ‘Analyse des équations,” Philosophical Magazine, 10, 38-40. (Available on Google Books.)

[Murphy 1839] Murphy, R. (1839). A Treatise on the Theory of Algebraical Equations. London: The Society for the Diffusion of Useful Knowledge. (Available on Google Books.)

[Murphy 1841a] Murphy, R. (1841). “Remark on Primitive Radices’,” Philosophical Magazine, 19, 369. (Available on Google Books.)

[Murphy 1841b] Murphy, R. (1841). “Calculations of Logarithms by Means of Algebraic Fractions,” Philosophical Magazine, 18, 479-480. (Available on Google Books.)

[Murphy 1842] Murphy, R. (1842). “On Atmospheric Refraction,” Philosophical Magazine, 20, 310-312. (Available on Google Books.)

[O’Connor and Robertson 1999] O’Connor, J. and Robertson, E. (1999). “Doubling the Cube.” Retrieved March 16, 2012, from MacTutor History of Mathematics Archive,
Web site: http://www-history.mcs.st-and.ac.uk/HistTopics/Doubling_the_cube.html.

[Peacock 1830] Peacock, G. (1830). A Treatise on Algebra. London: Cambridge.

[Petrova 1978] Petrova, S. S. (1978). “The Origin of the Linear Operator Theory in the Works of Servois and Murphy,” History and Methodology of the Natural Sciences, 20, 122-128. (Unpublished translation by Valery Krupkin.)

[Robertson 1848] Robertson, J. C. (Ed.) (1848). “Robert Murphy, The Mathematician,” The Mechanics’ Magazine, London: Robertson and Co., XLIX. 354-356.

[Servois 1814] Servois, F. J. (1814). “Essai sur un nouveau mode d’exposition des principes du calcul différentiel,” Annales de mathématiques pures et appliqués, 5 (1814-1815), 93-140.

[Urban 1843] Urban, S. (1843). “Clergy Deceased,” The Gentleman’s Magazine, XIX, 545.

[Venn 2009] Venn, J. (2009) Biographical History of Gonville and Caius College, 1349-1897, 2, General Books LLC.

[Whiston 1791] Whiston, W. (1791). The Elements of Euclid: with Select Theorems out of Archimedes. By the Learned Andres Tacquet. To which are added, Practical Corollaries, shewing the Uses of many of the Propositions. Dublin: R. Jackson in Meath-Street. (Available on Google Books.)

[Wilson 1985] Wilson, D.B. (1985). “The Educational Matrix: Physics Education at Early-Victorian Cambridge, Edinburgh and Glasgow Universities.” In P. M. Harman (Ed.), Wranglers and Physicists: Studies on Cambridge Mathematical Physics in the Nineteenth Century (pp. 12-48). Manchester: Manchester University Press.

[Wood 1830] Wood, J. (1830). The Elements of Algebra: Designed for the Use of Students in the University (Ninth Edition). Cambridge: J. Smith, Printer to the University. (Available on Google Books.)

Anthony J. Del Latto (Columbia University) and Salvatore J. Petrilli, Jr. (Adelphi University), "Robert Murphy: Mathematician and Physicist - Bibliography," Convergence (September 2013), DOI:10.4169/convergence20130901