A "standard" sequence of continued fractions for approximating √3 follows.
1+22=2=2.000000
1+22+22=53≈1.666667
1+22+22+22=74=1.750000
1+22+22+22+22=1911≈1.727273
1+22+22+22+22+22=2615≈1.733333
1+22+22+22+22+22+22=7141≈1.731707
1+22+22+22+22+22+22+22=9756≈1.732143
1+22+22+22+22+22+22+22+22=265153≈1.732026
1+22+22+22+22+22+22+22+22+22=362209≈1.732057
1+22+22+22+22+22+22+22+22+22+22=989571≈1.732049
1+22+22+22+22+22+22+22+22+22+22+22=1351780≈1.732051
These approximations give the same fractions as the Greek ladder table. Thus, it seems fair to declare that the continued fraction method of estimating √3 ties the Greek ladder method.