You are here

A Disquisition on the Square Root of Three - Continued Fractions

Author(s): 
Robert J. Wisner (New Mexico State University)

A "standard" sequence of continued fractions for approximating \(\sqrt{3}\) follows.

\[1+\frac{2}{2}=2=2.000000\]

\[1+\frac{2}{2+\frac{2}{2}}=\frac{5}{3}\approx 1.666667\]

\[1+\frac{2}{2+\frac{2}{2+\frac{2}{2}}}=\frac{7}{4}=1.750000\]

\[1+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2}}}}=\frac{19}{11}\approx 1.727273\]

\[1+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2}}}}}=\frac{26}{15}\approx 1.733333\]

\[1+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2}}}}}}=\frac{71}{41}\approx 1.731707\]

\[1+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2}}}}}}}=\frac{97}{56}\approx 1.732143\]

\[1+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2}}}}}}}}=\frac{265}{153}\approx 1.732026\]

\[1+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2}}}}}}}}}=\frac{362}{209}\approx 1.732057\]

\[1+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2}}}}}}}}}}=\frac{989}{571}\approx 1.732049\]

\[1+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{2}{2}}}}}}}}}}}=\frac{1351}{780}\approx 1.732051\]

These approximations give the same fractions as the Greek ladder table. Thus, it seems fair to declare that the continued fraction method of estimating \(\sqrt 3\) ties the Greek ladder method.

Robert J. Wisner (New Mexico State University), "A Disquisition on the Square Root of Three - Continued Fractions," Convergence (December 2010), DOI:10.4169/loci003514