You are here

Can You Really Derive Conic Formulae from a Cone? - References

Author(s): 
Gary S. Stoudt

 

  1. Apollonius of Perga. Conics Books I-III, translated by R. Catesby Taliaferro, in Great Books of the Western World, Vol. 11, Chicago: Encyclopedia Britannica, 1952. Revised Edition, edited by Dana Densmore, Santa Fe: Green Lion Press, 2000.  Book IV, translated by Michael Fried, Santa Fe: Green Lion Press, 2002.
  2. Apollonius. Conics Books V to VII, Edited with Translation and Commentary by G. J. Toomer, New York: Springer-Verlag, 1990.
  3. Brannan, David A., Matthew F. Esplen, and Jeremy J. Gray. Geometry, New York: Cambridge University Press, 1999.
  4. Chandrasekhar, Subrahmanyan. Newton's Principia for the Common Reader, New York: Oxford University Press, 1995.
  5. Coolidge, Julian Lowell. A History of the Conic Sections and Quadric Surfaces, Oxford: Clarendon Press, 1945.
  6. Densmore, Dana. Newton's Principia: The Central Argument, Santa Fe, NM: Green Lion Press, 1996.
  7. Hahn, Alexander. Basic Calculus: From Archimedes to Newton to its Role in Science, New York: Springer Verlag, 1998.
  8. Heath, Thomas. A History of Greek Mathematics, Vol. 1, New York: Dover Publications, 1981.
  9. Heath, Thomas. A History of Greek Mathematics, Vol. 2, New York: Dover Publications, 1981.
  10. Heath, Thomas. The Thirteen Books of the Elements, Vol. 1, New York: Dover Publications, 1956.
  11. Katz, Victor. A History of Mathematics: An Introduction, 2nd ed., Reading, MA: Addison-Wesley, 1998.
  12. Newton, Isaac. The Principia, Mathematical Principles of Natural Philosophy, a new translation by I. Bernard Cohen and Anne Whitman, Berkeley, CA: University of California Press, 1999.
  13. Stein, Sherman. What Did Archimedes Do Besides Cry Eureka?, Washington, D.C.: Mathematical Association of America, 1999.
  14. Thomas, Ivor. Selections Illustrating the History of Greek Mathematics, Vol. 1, Cambridge, MA: Harvard University Press, 1998.
  15. Thomas, Ivor. Selections Illustrating the History of Greek Mathematics, Vol. 2, Cambridge, MA: Harvard University Press, 1998.

Gary S. Stoudt, "Can You Really Derive Conic Formulae from a Cone? - References," Convergence (June 2015)