You are here

Teichmüller Theory and Applications to Geometry, Topology, and Dynamics Volume 2: Surface Homeomorphisms and Rational Functions

John H. Hubbard
Publisher: 
Matrix Editions
Publication Date: 
2016
Number of Pages: 
262
Format: 
Hardcover
Price: 
63.00
ISBN: 
9781943863006
Category: 
Monograph
There is no review yet. Please check back later.

Chapter 8 The classification of homeomorphisms of surfaces
    8.1 The classification theorem
    8.2 Periodic and reducible homeomorphisms
    8.3 Pseudo-Anosov homeomorphisms
    8.4 Proof of the classification theorem
    8.5 The structure in the reducible case

Chapter 9  Dynamics of polynomials
    9.1 Julia sets
    9.2 Fixed points
    9.3 Green's functions, Böttcher coordinates
    9.4 Extending
f_0 to S^1
    9.5 External rays at rational angles land

Chapter 10 Rational functions
    10.1 Introduction
    10.1 Thurston mappings
    10.2 Thurston mapps associated to spiders
    10.3 Thurston obstructions for spider maps and Levy cycles
    10.4 Julia sets of quadratic polynomials with superattracting cycles
    10.5 Parameter spaces for quadratic polynomials
    10.6 The Thurston pullback mapping s_f
    10.7 The derivative and coderivative of
s_f
    10.8 The necessity of the eigenvalue criterion
    10.9 Convergence in moduli spaces implies convergence in Teichmüller space
    10.10 Asymptotic geometry of Riemann surfaces
    10.11 Sufficiency of the eigenvalue criterion

Appendix C1  The Perron-Frobenius theorem
Appendix C2  The Alexander trick
Appendix C3  Homotopy implies isotopy
Appendix C4  The mapping class group and outer automorphisms
Appendix C5  Totally real stretch factors
Appendix C6  Irrationally indifferent fixed points
Appendix C7  Examples of Thurston pullback maps
Appendix C8  Branched maps with nonhyperbolic orbifolds
Appendix C9  The Sullivan dictionary