Series Preface vii
Preface to the Second Edition ix
Preface to the First Edition xi
1 Linear Spaces 1
1.1 Linear spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Normed spaces . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Convergence . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Banach spaces . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Completion of normed spaces . . . . . . . . . . . . . 14
1.3 Inner product spaces . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . 26
1.3.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . 28
1.4 Spaces of continuously differentiable functions . . . . . . . 38
1.4.1 H¨older spaces . . . . . . . . . . . . . . . . . . . . . . 41
1.5 Lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.6 Compact sets . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2 Linear Operators on Normed Spaces 51
2.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2 Continuous linear operators . . . . . . . . . . . . . . . . . . 55
2.2.1 L(V,W) as a Banach space . . . . . . . . . . . . . . 59
xiv Contents
2.3 The geometric series theorem and its variants . . . . . . . . 60
2.3.1 A generalization . . . . . . . . . . . . . . . . . . . . 64
2.3.2 A perturbation result . . . . . . . . . . . . . . . . . 66
2.4 Some more results on linear operators . . . . . . . . . . . . 71
2.4.1 An extension theorem . . . . . . . . . . . . . . . . . 72
2.4.2 Open mapping theorem . . . . . . . . . . . . . . . . 73
2.4.3 Principle of uniform boundedness . . . . . . . . . . . 75
2.4.4 Convergence of numerical quadratures . . . . . . . . 76
2.5 Linear functionals . . . . . . . . . . . . . . . . . . . . . . . 79
2.5.1 An extension theorem for linear functionals . . . . . 80
2.5.2 The Riesz representation theorem . . . . . . . . . . 82
2.6 Adjoint operators . . . . . . . . . . . . . . . . . . . . . . . . 85
2.7 Types of convergence . . . . . . . . . . . . . . . . . . . . . . 90
2.8 Compact linear operators . . . . . . . . . . . . . . . . . . . 93
2.8.1 Compact integral operators on C(D) . . . . . . . . . 94
2.8.2 Properties of compact operators . . . . . . . . . . . 95
2.8.3 Integral operators on L2(a, b) . . . . . . . . . . . . . 97
2.8.4 The Fredholm alternative theorem . . . . . . . . . . 99
2.8.5 Additional results on Fredholm integral equations . 103
2.9 The resolvent operator . . . . . . . . . . . . . . . . . . . . 107
2.9.1 R(λ) as a holomorphic function . . . . . . . . . . . . 108
3 Approximation Theory 113
3.1 Approximation of continuous functions by polynomials . . . 114
3.2 Interpolation theory . . . . . . . . . . . . . . . . . . . . . . 115
3.2.1 Lagrange polynomial interpolation . . . . . . . . . . 117
3.2.2 Hermite polynomial interpolation . . . . . . . . . . . 121
3.2.3 Piecewise polynomial interpolation . . . . . . . . . . 121
3.2.4 Trigonometric interpolation . . . . . . . . . . . . . . 124
3.3 Best approximation . . . . . . . . . . . . . . . . . . . . . . . 129
3.3.1 Convexity, lower semicontinuity . . . . . . . . . . . . 129
3.3.2 Some abstract existence results . . . . . . . . . . . . 131
3.3.3 Existence of best approximation . . . . . . . . . . . 134
3.3.4 Uniqueness of best approximation . . . . . . . . . . 136
3.4 Best approximations in inner product spaces, projection on
closed convex sets . . . . . . . . . . . . . . . . . . . . . . . . 139
3.5 Orthogonal polynomials . . . . . . . . . . . . . . . . . . . . 146
3.6 Projection operators . . . . . . . . . . . . . . . . . . . . . . 150
3.7 Uniform error bounds . . . . . . . . . . . . . . . . . . . . . 154
3.7.1 Uniform error bounds for L2-approximations . . . . 156
3.7.2 Interpolatory projections and their convergence . . . 158
4 Fourier Analysis and Wavelets 161
4.1 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.2 Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . 175
Contents xv
4.3 Discrete Fourier transform . . . . . . . . . . . . . . . . . . . 180
4.4 Haar wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.5 Multiresolution analysis . . . . . . . . . . . . . . . . . . . . 193
5 Nonlinear Equations and Their Solution by Iteration 201
5.1 The Banach fixed-point theorem . . . . . . . . . . . . . . . 202
5.2 Applications to iterative methods . . . . . . . . . . . . . . . 206
5.2.1 Nonlinear equations . . . . . . . . . . . . . . . . . . 207
5.2.2 Linear systems . . . . . . . . . . . . . . . . . . . . . 208
5.2.3 Linear and nonlinear integral equations . . . . . . . 211
5.2.4 Ordinary differential equations in Banach spaces . . 215
5.3 Differential calculus for nonlinear operators . . . . . . . . . 219
5.3.1 Fr´echet and Gˆateaux derivatives . . . . . . . . . . . 219
5.3.2 Mean value theorems . . . . . . . . . . . . . . . . . . 223
5.3.3 Partial derivatives . . . . . . . . . . . . . . . . . . . 224
5.3.4 The Gˆateaux derivative and convex minimization . . 226
5.4 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . 230
5.4.1 Newton’s method in a Banach space . . . . . . . . . 230
5.4.2 Applications . . . . . . . . . . . . . . . . . . . . . . 233
5.5 Completely continuous vector fields . . . . . . . . . . . . . . 236
5.5.1 The rotation of a completely continuous vector field 238
5.6 Conjugate gradient method for operator equations . . . . . 239
6 Finite Difference Method 249
6.1 Finite difference approximations . . . . . . . . . . . . . . . 249
6.2 Lax equivalence theorem . . . . . . . . . . . . . . . . . . . . 256
6.3 More on convergence . . . . . . . . . . . . . . . . . . . . . . 265
7 Sobolev Spaces 273
7.1 Weak derivatives . . . . . . . . . . . . . . . . . . . . . . . . 273
7.2 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . 279
7.2.1 Sobolev spaces of integer order . . . . . . . . . . . . 280
7.2.2 Sobolev spaces of real order . . . . . . . . . . . . . . 286
7.2.3 Sobolev spaces over boundaries . . . . . . . . . . . . 288
7.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
7.3.1 Approximation by smooth functions . . . . . . . . . 290
7.3.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . 291
7.3.3 Sobolev embedding theorems . . . . . . . . . . . . . 291
7.3.4 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7.3.5 Equivalent norms . . . . . . . . . . . . . . . . . . . . 294
7.3.6 A Sobolev quotient space . . . . . . . . . . . . . . . 298
7.4 Characterization of Sobolev spaces via the Fourier transform 303
7.5 Periodic Sobolev spaces . . . . . . . . . . . . . . . . . . . . 307
7.5.1 The dual space . . . . . . . . . . . . . . . . . . . . . 309
7.5.2 Embedding results . . . . . . . . . . . . . . . . . . . 310
xvi Contents
7.5.3 Approximation results . . . . . . . . . . . . . . . . . 311
7.5.4 An illustrative example of an operator . . . . . . . . 312
7.5.5 Spherical polynomials and spherical harmonics . . . 313
7.6 Integration by parts formulas . . . . . . . . . . . . . . . . . 319
8 Variational Formulations of Elliptic Boundary Value Problems
323
8.1 A model boundary value problem . . . . . . . . . . . . . . . 324
8.2 Some general results on existence and uniqueness . . . . . . 326
8.3 The Lax-Milgram Lemma . . . . . . . . . . . . . . . . . . . 330
8.4 Weak formulations of linear elliptic boundary value problems 334
8.4.1 Problems with homogeneous Dirichlet boundary conditions
. . . . . . . . . . . . . . . . . . . . . . . . . . 334
8.4.2 Problems with non-homogeneous Dirichlet boundary
conditions . . . . . . . . . . . . . . . . . . . . . . . . 335
8.4.3 Problems with Neumann boundary conditions . . . . 337
8.4.4 Problems with mixed boundary conditions . . . . . . 339
8.4.5 A general linear second-order elliptic boundary value
problem . . . . . . . . . . . . . . . . . . . . . . . . . 340
8.5 A boundary value problem of linearized elasticity . . . . . . 343
8.6 Mixed and dual formulations . . . . . . . . . . . . . . . . . 348
8.7 Generalized Lax-Milgram Lemma . . . . . . . . . . . . . . . 353
8.8 A nonlinear problem . . . . . . . . . . . . . . . . . . . . . . 355
9 The Galerkin Method and Its Variants 361
9.1 The Galerkin method . . . . . . . . . . . . . . . . . . . . . 361
9.2 The Petrov-Galerkin method . . . . . . . . . . . . . . . . . 367
9.3 Generalized Galerkin method . . . . . . . . . . . . . . . . . 370
9.4 Conjugate gradient method: variational formulation . . . . 372
10 Finite Element Analysis 377
10.1 One-dimensional examples . . . . . . . . . . . . . . . . . . . 379
10.1.1 Linear elements for a second-order problem . . . . . 379
10.1.2 High order elements and the condensation technique 382
10.1.3 Reference element technique, non-conforming method 384
10.2 Basics of the finite element method . . . . . . . . . . . . . . 387
10.2.1 Triangulation . . . . . . . . . . . . . . . . . . . . . . 387
10.2.2 Polynomial spaces on the reference elements . . . . . 389
10.2.3 Affine-equivalent finite elements . . . . . . . . . . . . 391
10.2.4 Finite element spaces . . . . . . . . . . . . . . . . . 392
10.2.5 Interpolation . . . . . . . . . . . . . . . . . . . . . . 395
10.3 Error estimates of finite element interpolations . . . . . . . 396
10.3.1 Interpolation error estimates on the reference element 397
10.3.2 Local interpolation error estimates . . . . . . . . . . 398
10.3.3 Global interpolation error estimates . . . . . . . . . 401
Contents xvii
10.4 Convergence and error estimates . . . . . . . . . . . . . . . 404
11 Elliptic Variational Inequalities and Their Numerical Approximations
413
11.1 Introductory examples . . . . . . . . . . . . . . . . . . . . . 413
11.2 Elliptic variational inequalities of the first kind . . . . . . . 420
11.3 Approximation of EVIs of the first kind . . . . . . . . . . . 425
11.4 Elliptic variational inequalities of the second kind . . . . . . 428
11.5 Approximation of EVIs of the second kind . . . . . . . . . . 434
11.5.1 Regularization technique . . . . . . . . . . . . . . . . 436
11.5.2 Method of Lagrangian multipliers . . . . . . . . . . . 438
11.5.3 Method of numerical integration . . . . . . . . . . . 440
12 Numerical Solution of Fredholm Integral Equations of the
Second Kind 447
12.1 Projection methods: General theory . . . . . . . . . . . . . 448
12.1.1 Collocation methods . . . . . . . . . . . . . . . . . . 448
12.1.2 Galerkin methods . . . . . . . . . . . . . . . . . . . 450
12.1.3 A general theoretical framework . . . . . . . . . . . 451
12.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
12.2.1 Piecewise linear collocation . . . . . . . . . . . . . . 457
12.2.2 Trigonometric polynomial collocation . . . . . . . . 459
12.2.3 A piecewise linear Galerkin method . . . . . . . . . 461
12.2.4 A Galerkin method with trigonometric polynomials . 463
12.3 Iterated projection methods . . . . . . . . . . . . . . . . . . 468
12.3.1 The iterated Galerkin method . . . . . . . . . . . . . 470
12.3.2 The iterated collocation solution . . . . . . . . . . . 472
12.4 The Nystr¨om method . . . . . . . . . . . . . . . . . . . . . 478
12.4.1 The Nystr¨om method for continuous kernel functions 478
12.4.2 Properties and error analysis of the Nystr¨om method 481
12.4.3 Collectively compact operator approximations . . . . 489
12.5 Product integration . . . . . . . . . . . . . . . . . . . . . . . 492
12.5.1 Error analysis . . . . . . . . . . . . . . . . . . . . . . 494
12.5.2 Generalizations to other kernel functions . . . . . . . 496
12.5.3 Improved error results for special kernels . . . . . . . 498
12.5.4 Product integration with graded meshes . . . . . . . 498
12.5.5 The relationship of product integration and collocation
methods . . . . . . . . . . . . . . . . . . . . . . 503
12.6 Iteration methods . . . . . . . . . . . . . . . . . . . . . . . . 504
12.6.1 A two-grid iteration method for the Nystr¨om method 505
12.6.2 Convergence analysis . . . . . . . . . . . . . . . . . . 508
12.6.3 The iteration method for the linear system . . . . . 511
12.6.4 An operations count . . . . . . . . . . . . . . . . . . 513
12.7 Projection methods for nonlinear equations . . . . . . . . . 515
12.7.1 Linearization . . . . . . . . . . . . . . . . . . . . . . 515
xviii Contents
12.7.2 A homotopy argument . . . . . . . . . . . . . . . . . 518
12.7.3 The approximating finite-dimensional problem . . . 520
13 Boundary Integral Equations 523
13.1 Boundary integral equations . . . . . . . . . . . . . . . . . 524
13.1.1 Green’s identities and representation formula . . . . 525
13.1.2 The Kelvin transformation and exterior problems . 527
13.1.3 Boundary integral equations of direct type . . . . . 531
13.2 Boundary integral equations of the second kind . . . . . . . 537
13.2.1 Evaluation of the double layer potential . . . . . . . 540
13.2.2 The exterior Neumann problem . . . . . . . . . . . 543
13.3 A boundary integral equation of the first kind . . . . . . . 549
13.3.1 A numerical method . . . . . . . . . . . . . . . . . . 551
References 555
Index 569