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Abstract

What were the philosophical foundations of the differential calculus at
the turn of the nineteenth century? There were three competing notions:
differentials, limits, and power series expansions. François-Joseph Servois
(1768-1847), a disciple of Lagrange, supported the power series formalism
and was sympathetic to a foundation based on limits. On the other hand,
he claimed that the use of infinitesimals in mathematics would “one day
be accused of having slowed the progress of the mathematical sciences,
and with good reason.” We give here an English translation of Servois’
philosophical paper, “Reflections on the various systems of exposition of
the principles of the differential calculus.” We provide an analysis of
Servois’ paper in our article, “Servois’ 1814 Essay on the Principles of the
Differential Calculus, with an English Translation,” available in the MAA
online journal Loci: Convergence at http://mathdl.maa.org/mathDL/46/
(DOI: 10.4169/loci003487).
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REFLECTIONS 2

Reflections on the various systems of
exposition of the principles of the

differential calculus and, in particular,
on the doctrine of the infinitely small1

By Mr. Servois, professor of the artillery schools

————

[141]2 Among the different manners of presenting the differential calculus, I
would not say that there is one that is necessary to adopt. All of those which
are legitimate have at least in the eyes of these who propose them, several
particular advantages. However, if it is useful to join the differential calculus
solidly with ordinary algebraic analysis; if the passage from one to the other is
to be easy and executed on the same level, so to speak; or if we wish to answer
these questions in a clear and precise manner: What is a differential? When
and how do differentials arise naturally? With which analytic functions do they
maintain intimate connections, not just simple analogies? then I believe that I
admit no partiality in affirming that we would incline towards that theory which
I have tried to sketch an outline of in the previous article.3

In algebraic analysis, after having considered quantities as being determinate
or constant, we are naturally led to consider them as variables. Any variation,
be it constant or variable, is essentially a finite quantity, or at least this is the
first judgment we bring to it. Now, [142] it is necessary to express the variation
of a function composed of elementary variables by means of the variation of
these same variables. This is the first problem which we may set ourselves in
this matter; the first attempts at a solution lead us to series. Thus, when in
arithmetic, we have not yet discovered series, rather quotients and roots, ap-
proximated by means of decimals, we are necessarily drawn there by considering
the quantity to be variable. Series and the differential calculus, therefore ought
to arise together. It is in the introduction of the latter that we encounter the
first expansion of the varied state of an arbitrary function, z for example. In
attempting to arrange this expansion in another way, we must pay attention to
the very remarkable series of differences

∆z − 1
2

∆2z +
1
3

∆3z − 1
4

∆4z + . . . ,

which one is tempted to give a name that recalls its composition: that of differen-
tial presents itself naturally. Already, by comparing the two different expansions

1Réflexions sur les divers systèmes d’exposition des principes du calcul différentiel, et, en
particulier, sur la doctrine des infiniment petits, an article in Annales des Mathématiques
pures et appliquées 5 (1814-1815), pp. 141-170. In some citations, the title begins with the
words “Philosophie Mathématique,” because the headline of a title page in Gergonne’s Annales
is the editorial category to which the article was assigned.

2Numbers in square brackets represent the original page numbers of the article in Ger-
gonne’s Annales.

3[Servois 1814a].
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REFLECTIONS 3

to which the elementary binomial (1 + a)m is susceptible, we have discovered
the series

a− 1
2
a2 +

1
3
a3 − 1

4
a4 + . . . ,

to which we have given the name logarithm of (1 +a). Thus, by simple analogy,
the differential is like the logarithm of the varied state (z+ ∆z). Following this
route other relations among the differential, the difference, the varied state, and
numbers, are manifest. It is necessary to study the reason why. Everything
is happily explained when, after stripping away the specific qualities of these
functions, by severe abstraction, we simply consider the two properties that they
possess in common: being distributive and commutative among themselves.

This path, although natural, was not the one followed by the inventors. [143]
It is a fact that the differential calculus was born of the needs of geometry. Now
the algebraic calculus, which concerns itself essentially with discrete quantities,
that is, with numbers, may not be applied to continuous quantities, that is, to
extension, which the numerical variations become when we suppose them to be
arbitrarily or indefinitely small. Therefore, the means of unifying the calculus
and geometry is necessarily the method of limits, which is why the inventors
and the good souls that followed them took, or at least indicated, limits as the
method of exposition and of application of the differential calculus.

Newton did not, as Maclaurin and some others of his compatriots did, apply
his calculus of fluxions to mechanics without due consideration. His theory is
founded on the theory of the final causes of quantities and, according to him,
Ultimae rationes reverà non sunt rationes QUANTITATUM ULTIMARUM, sed
LIMITES ad quos rationes semper appropinquant4 (Book 1 of the Principia,5

Scholium to Lemma XI); a very enlightened principle, one to which we have not
paid sufficient attention.

Leibnitz, co-inventor of the differential calculus, professed the same doc-
trine. He always gave his differentials as incomparably small quantities and,
in applications, he always believed that one could make the proofs rigorous by
the method of Archimedes – that of limits. . . . Quod etiam Archimedes sumsit
aliique post ipsum omnes, et hoc ipsum est quod dicitur differentiam esse datâ
quâvis minorem; et Archimede quidem PROCESSU res semper deductione ad
absurdum confirmari potest6 Reply to the objections of Nieuwentiit, Oeuvres,7

vol. 3, p. 328). What’s more, this wise man never admitted infinitely small
quantities in the proper sense of the term. We know the rather long discussion
which took place between him and Johann Bernoulli on this matter, a discussion

4“For those ultimate ratios with which quantities vanish, are not truly ratios of ultimate
quantities, but limits towards which they approach nearer than by any given difference, [but
never go beyond, nor in effect attain to, till the quantities are diminished to infinitum.]”
English translation from [Newton 1999].

5[Newton 1687].
6“Which even Archimedes supposed, as well as others after him, and this thing which is

called the differential is given to be however small as you like; and Archimedes was always
able to confirm this by his process of deduction to absurdity.” Translation by Prof. C. Edward
Sandifer of Western Connecticut State University.

7[Leibniz 1765].
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REFLECTIONS 4

in which he always held the negative (see the Correspondence8 between these
illustrious geometers, published by Cramer).

[144] In the beautiful preface of his Institutiones calculi differentialis,9 Euler
does not speak a different language. . . . Hic autem LIMES qui quasi rationem
ultimam incrementorum constituit; verum est objectum calculi differentialis.10

And if, in the course of his book, this great man let slip a few expressions that
were a little hard to swallow, it seems to me we must interpret these benignly,
following this formally recognized principle.

We know that d’Alembert distinguished himself among the geometers who
applied the method of limits to the differential calculus. Thus, one ought not
be surprised to count among the same ranks the good geometers who came
afterwards: such as Karoten, Koestner, Holland, Tempelhof, Vincent Ricati
et Saladini, Cousin, Lhuilier, Paoli, Pasquich, Gourief, etc. Furthermore, it
would not be difficult to show that the particular methods, such as those of
derived functions of the immortal Lagrange, which has many followers, and
those of indeterminates, proposed or recommended by Boscowich, Naudenot,
Arbogast, Carnot, etc., amount fundamentally to methods of limits. How then
did it happen that this strange method of the infinitely small has acquired such
celebrity, at least on the continent, and has even succeeded in placing its name
among the synonyms of the differential method?

I might, if I had the time, assign several probable causes to this usurpation.
But what surprises me most is that the method of the infinitely small still
persists, not only among its followers, but among enthusiastic trouble-makers.
Let us listen to one of these, for a moment, and admire!

“The care to avoid the idea of the infinite in mathematical research,
incontestably indicates a true ignorance of the meaning of this idea
as well as a blind routine. And we are not afraid to admit that we
believe we anticipate the judgment of posterity in declaring that,
however great the works of certain geometers may be, the care that
they take in imitating the ancients in the exclusion of the idea of the
infinite, proves irrefragably [145] that they are not at the heights
to which the science was brought since Leibnitz, because they avoid
this lofty region where the principle of the generation of quantities
is found, and consequently the true source of mathematical laws, to
come crawling to the domain of the senses, the only one known to
the ancients, where one finds nothing but the crude mechanism of
calculation.” (Réfutation de la théorie des fonctions analitiques11

de Lagrange, Paris, 1812, page 40).

Already in a previous work (Introduction à la philosophie des mathémati-

8[Cramer 1745].
9[Euler 1755].

10“This limit, which is, as it were, the final ratio of the increments, is the true object of the
differential calculus.” Translation from [Euler 2000].

11[Wronski 1812].
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ques,12 Paris, 1811) the same author, in announcing that “the procedures (of the
differential calculus) imply an antinomy which makes them alternately appear
as though they were endowed with, and as though they were deprived of, a
rigorous exactness” (Philosophie, etc., page 32), has rebuked the non-infinitary
geometers, with that trenchant tone and that dogmatic emphasis, which forms
the dominant color of the writings inspired by the Système philosophique (that
of Kant), which he professes.

Let us try for a moment, to appreciate all of this in its proper place.
First of all, I recall quite well that Kant, finding the infinite in pure reason

and the finite in the senses, concluded from the coexistence of these two facilities
in the cognitive being, that he ought thereby to have, relative to the cosmologi-
cal idea for example, various antinomies which are fundamentally illusions that
are not difficult to avoid, when one truly wishes to distinguish carefully that
which each of theforms of cognition brings to bear on them. Let us do the same
thing with respect to the supposed mathematical antinomy,13 which the disciple
congratulates himself for having discovered in the theory of the differential cal-
culus. Let us admit, because it is true, that calculation belongs exclusively to
the senses which, according to these gentlemen, is the faculty of the individual.
It follows that there is not just paralogism, but palpable error in subjecting the
infinite to calculation. The infinite is the domain of another faculty – that of
the absolute, or what is called pure reason. I beg my readers pardon for the
use that I have just made of an idiom [146] with which, no doubt, few people
in France are familiar, but here I am making an argument which we formally
called ad hominem.

Let us not say that this illusion is so necessary that we may not reject it. . . !
We walk ahead of he that denies the movement. Newton, d’Alembert, Lagrange,
etc. have walked there, that is to say that they have put the principles of the
differential calculus into operation without any dependence on the infinite, or
even the word infinite.

But is the infinite not this lofty region where the principle of the generation
of quantities is found, the true source of mathematical laws? Certainly not,
unless you have completely made up your mind to remain under the influence
of the illusion which you have indicated. I will add that, with respect to the
differential calculus, the introduction of the idea of the infinite is not even useful
to this end.

The idea of the infinitely small does not even shorten the exposition. Indeed,
it is impossible to establish the hierarchy of infinitely small quantities of different
orders, without recourse to Taylor series, or to various other equivalents. I defy
you to prove satisfactorily without this that, for example, if dz is an infinitely
small quantity of the first order, then d2z is therefore one of the second order.

12[Wronski 1811].
13In his Critique of Pure Reason [Kant 1902], Kant described four “antinomies,” or pairs of

contradictory propositions he called “thesis” and “antithesis,” arising from the disagreement
between the evidence of the senses and the application of reason. Both Wronski and Servois
are referring to the First Antinomy, addressing the finiteness or infinity of space and time. It
is not clear that either of them clearly understands Kant.
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REFLECTIONS 6

There is the same problem with applications. If we do not admit the hypothesis
of the polygonal curve,14 a hypothesis which appears so strange to those who
have only studied the elements of Euclidean geometry, then I defy you to prove
without Taylor series, that the prolongation to the tangent from the ordinate
that is infinitely close to the ordinate of the point of tangency, the difference
between the infinitesimal arc and its chord, etc., are infinitely small quantities of
the second order or higher. If we admit the gothic hypothesis that the ratio dy

dx is
rigorously equal to the ratio of the ordinate to the subtangent, then why do we
neglect terms in differentiating the equation of the curve? Moreover, as it has
very often been remarked by the author of the theory of analytic functions,15 it
is a fact that the results of the infinitesimal calculus are exact by compensation
of errors.16 Now, [147] I again issue the challenge of explaining this major fact,
without having recourse to series. Having said this, because it is absolutely
necessary before everything else to master expansion by series, why would we
not go from there immediately to the differential calculus, by the door that is
open on the same level? And why would we return by a gloomy path, that
of infinitesimal considerations, to the principles of the calculus? If we wish,
according to the true theory, we may form abridged methods which permit
in advance us to strike out or omit the terms of a series that will disappear
at the end of long calculations. I do not oppose this that at all; experienced
geometers all do it. And once we are in possession of these methods we may,
in geometry and in mechanics, speak in a language which is close to that of the
infinitaries, without nevertheless attaching the same ideas to the same terms,
but it is absolutely impractical to begin with this.

There is more. If we consult the history of the differential calculus, we would
see their many puerile or ridiculous questions, the most animated debates, and
even errors, taking as their source the obscurity spread by the infinitely small,
and the difficulties of handling them. I won’t engage in this discussion, but who
does not recall the incomprehensibilities of Sturmius, the Subtleties of Guido
Grandi; the Bridges built between the finite and the infinite of Fontenelle; the
error of Sauveur in the problem of the Brachystochrone; that of Jean Bernoulli
himself, in the first solution to the Isoperimetric problem; that of Charles in par-
ticular solutions to differential equations; the discussion concerning the analytic
expression of the accelerative force of non-uniform motion – discussions which
degenerated into disputes between Parent and Saurin, concerning the theorems
of Huygens on centrifugal force, and which gave rise to that ridiculous distinc-
tion between the force in a polygonal curve and in a rigorous curve; discussions
that even now have not yet ended, to [148] judge at least, by several memoirs

14L’Hôpital’s Analyse des infiniment petits gave two postulates for infinitesimals, the second
of which is “We suppose that a curved line may be considered as an assemblage of infinitely
many straight lines, each one being infinitely small or, what amounts to the same thing, as
a polygon with an infinite number of sides, each being infinitely small, which determine the
curvature of the line by the angles formed amongst themselves” [L’Hôpital 1696, p. 3].

15This is presumably a reference to Lagrange.
16The doctrine of “compensation of errors,” which explains how calculus can give correct

answers even when based on faulty arguments, was in fact first stated by Berkeley in The
Analyst [Berkeley 1734].
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of Trembley, (Berlin Academy17, 1801, etc.) etc., etc.
In a word, I am convinced that the infinitesimal method does not nor can-

not have a theory, that in practice it is a dangerous instrument in the hands of
beginners, that it necessarily imprints a long-lasting character of awkwardness
and pusillanimity upon their work in the course of applications. Finally, antic-
ipating, for my own part, the judgment of posterity, I dare to predict that this
matter will one day be accused of having slowed the progress of the mathemat-
ical sciences, and with good reason. But I ought to recapture the thread of my
reflections.

I have already hinted at the distinction that I established, following Euler,
between the method of exposition and the method of application of the differ-
ential calculus. The latter, when it is a matter of space or time, the principal
objects of applications, is necessarily the general method of series. Particularly
with respect to applications, nothing, in my opinion, surpasses in elegance –
I might even say majesty – the path traced out by the last two parts of the
excellent Théorie des fonctions analitiques.18 With regard to the first method,
that of exposition, I have always found several inconveniences in deducing it
from the consideration of derived functions19 or, in general, of limits. In my
opinion, one of the most serious inconveniences is not being brought to the fun-
damental series until after having gratuitously assigned them their form. This
inconvenience, certainly sensed by the author of derived functions, was not hap-
pily removed by the proposed proof (Théorie des fonctions [analitiques], page
7 of the 1st edition and page 8 of the second). I explained this frankly, at the
beginning of my second memoir,20 and I cited the conforming opinion of Ar-
bogast (manuscript letter) and of Burja (Mémoires de Berlin,21 1801), but no
one, least of all me, could have dared to base a scandal such as the Refutation
de la théorie des functions analitiques on this. I therefore had to cast my eye
on another approach, and here is the path that I followed.

The first expansions into series that we encounter are the results of [149]
successive transformations applied to an equation of identity. Let us write for
example,

1
1 + a

=
1

1 + a
.

Let us execute indefinitely on the right-hand side the division operation, and
we will have the series

1
1 + a

= 1− a+ a2 − a3 + a4 + . . . .

17Jean Trembley contributed a number of memoirs to the volumes of Mémoires de
l’Académie royale des sciences et belles-lettres for the years 1801, 1802, 1803 and 1804.

18[Lagrange 1797]. Servois used the more archaic spelling of “analytiques.”
19I.e., derivatives.
20Here, Servois is making reference to the fact that his “Essay” [Servois 1814a] was based

on two previously unpublished Memoirs that he had presented to the Institut de France.
21[Burja 1804].
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Now, write the identity

1
a− b

=
1

a+ x
+

b+ x

(a+ x)(a− b)
.

Letting x = 0, x = c, x = d, . . ., successively, we have the sequence of trans-
formed equations

1
a− b

=
1
a

+
b

a(a− b)
1

a− b
=

1
a+ c

+
b+ c

(a+ c)(a− b)
1

a− b
=

1
a+ d

+
b+ d

(a+ d)(a− b)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us take the sum of the products of these equations by 1, by b
a , by b(b+c)

a(a+c) , by
b(b+c)(b+d)
a(a+c)(b+d) , by . . ., respectively and, after simplifying, we will have the series

1
a− b

=
1
a

+
b

a(a+ c)
+

b(b+ c)
a(a+ c)(a+ d)

+ . . .

+
b(b+ c)(b+ d) . . . (b+ p)

a(a+ c)(a+ d) . . . (a+ p)(a+ q)

+
b(b+ c)(b+ d) . . . (b+ p)(b+ q)

a(a+ c)(a+ d) . . . (a+ p)(a+ q)(a− b)
.

[150] It is with this formula that Nicole demonstrates how to sum an infinite
series (Mémoires de l’académie des sciences de Paris,22 1727).

These series have the property of being halted at any term we wish and of
having a complementary term, necessary to preserve the identity. In the first
one, this complement is the remainder of the division at hand, divided by 1 +a.
In the second, it is found at the end. I know that Taylor Series has, in fact, a
similar complement that must also belong to all those series that are so derived,
and consequently to all known series. From this I allow myself to conjecture
that all series must be the result of a sequence of transformations of identical
equations, and that all must enjoy the property of being halted wherever we
might wish, and to preserve the identity by means of a complementary term.
This conjecture is happily changed into a certainty, and the outcome is a new
and very important notion of the nature of series. At the beginning of the
preceding memoir, we saw how, beginning from equations of identity, I came to
fundamental expansions. “The procedure that the author followed (as it is said
in the report of the Commissioners) has two advantages which must be noted:
the first is that he never requires that we know in advance the form of the
series we seek and the second is that he permits halting this series at any term

22[Nicole 1727].
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whatsoever.” The form of the complement is recognized immediately. For Taylor
Series, in particular, this form is the one that Ampère first noticed, in his very
beautiful memoir on analysis (13th cahier of Journal de l’école polytechnique23).

Here, too, I find myself in direct opposition to the Transcendental philoso-
pher.

“Series taken in all of their generality, . . . have by themselves, in
the indefinite number of these terms and [151] without the aid of
any complementary quantity, a determined significance . . . This is
the philosophical point of the important question of series. It is this
point, according to us, that geometers have not yet achieved, in the
state in which the science is found.” (Réfutation, page 58).

This time we no longer have any need to quibble in order to show up the falseness
of these assertions. The equation of identity, the successive transformations,
the series and its complement, are matters of fact. Divergent series may only
be used with their complements, and in this way we have long ago happily
resolved the paradox presented by the expansion of the fraction 1

1+1 . When
convergence is recognized, we determine the successive and indefinite decrease
of the complement on the basis of the comparison of consecutive expansions and
by reason of identity. In practice, we only need the series itself, without having
any need of this complement.

Without doubt, we might have remarked that our method of exposition
offers another considerable advantage: that of preserving, in the quantities with
respect to which our series are ordered, all of the generality to which they are
susceptible. That is, not to require particular consideration as regards positive
or negative, whole or fractional.

A second inconvenience in the application of limits to the exposition of
the differential calculus - an inconvenience that it shares with the infinitesimal
method - is to leave veiled in mystery these beautiful analogies of differential
functions among themselves and with their factors. We have seen how I am
brought to pull back this veil. With regard to this, the Commissioners have
also had the goodness to say: “By showing that it is to their nature of being
distributive, in general, and commutative amongst themselves and with the con-
stant factor, that varied states, differences and differentials owe their properties,
and the analogies in their expansions with those of powers, (the author) gives
their true origin, and distinguishes this idea from separation of [152] scales,
which Arbogast had conceived of, according to Lorgna, to explain the same
circumstances, and that appeared somewhat dubious.” Indeed, in our formulas,
we never lose sight of the subject of the functions, and it takes only little atten-
tion to perceive this. There is neither separation of scales, nor operations which
lead exclusively to these scales. The use of the proposed notation (no. 2)24 is
not indispensible, it is simply quite useful, in so far as it saves the trouble of
representing, in each instance, polynomial functions by new letters. The beau-
tiful method of integrating equations with constant coefficients, published in

23[Ampère 1806].
24This reference is to §2 of [Servois 1814a].
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Annales de mathématiques (volume 3, p. 244ff),25 which adds much interest to
the formulas of the analogy, does not require separation of scales, as it will be
easy to show. I can say nothing else here about another method of application
that these formulas provide to the author of the cited memoir (ibid no. 9 &
10); this would take me too far afield. I will simply make the observation that,
if one fears stumbling into a risky and little traveled path, one need take, as the
initial formulas, only these one has derived oneself, and which, beginning with
identities, were transformed only according to the twin properties of numbers,
that of being distributive and commutative amongst themselves. Thus, for ex-
ample, I would at very least commit to a revision of the initial formula if, among
the results that it had provided me, I found a series like the following one (ibid,
page 252, formula 23).

π

4
· 1
x2

=
1

x2 − 1
− 1

3
1

x2 − 32
+

1
5

1
x2 − 52

− . . . .

Indeed, because

x2

x2 − 1
= 1 +

1
x2 − 1

,
x2

x2 − 32
= 1 +

32

x2 − 32
,

x2

x2 − 52
= 1 +

52

x2 − 52
, . . .

it changes into [153]

π

4
=
(

1− 1
3

+
1
5
− 1

7
+ . . .

)
+
{

1
x2 − 1

− 3
x2 − 32

+
5

x2 − 52
− . . .

}
.

From this, because

π

4
= 1− 1

3
+

1
5
− 1

7
+ . . . ,

we conclude that26

0 =
1

x2 − 1
− 3
x2 − 32

+
5

x2 − 52
− . . . =

{ 1
x−1 −

1
x−3 + 1

x−5 − . . .
− 1
x+1 + 1

x+3 −
1

x+5 + . . . .

In this, I make x = 0 and I have, dividing27 by 2

0 = −1
1

+
1
3
− 1

5
+

1
7
− . . . = −π

4
,

a result which is not true. If I also let x = 1, I have

0 =
1
0

+
1
2
− 1

4
+

1
6
− . . .− 1

2
+

1
4
− 1

6
+ . . . =

1
0

25[Français 1812].
26The equation below is as Servois wrote it. Clearly, the rightmost expression should have

been divided by 2.
27Because of the error noted in the previous footnote, Servois does not actually need to

divide by 2 here.
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a result even more strange than the first.28

I think I may be permitted to draw a consequence of another kind from
my theory of [154] distributive and commutative functions: that the Leibnizian
notation for the differential calculus ought to be preserved. Leave the dotted
letters to the English; let us preserve accents for the useful work of extending
our alphabets. In applying powers to that notation which, according to all
analysts, is the most perfect, let us reserve numerical exponents exclusively for
representing the different orders of repeated functions. As for my notation for
partial differentials,29 one may think what one wishes; it has no other advantage
than to be in harmony with that notation which I believed should be adopted
for partial functions in general, which could hardly be more simple and more
meaningful. Furthermore, it is remarkable that Euler had proposed something
entirely similar in a memoir that appears in the Nova Acta of Petersberg (1786,
page 17)30.

I could have dispensed with giving (no. 19) an idea of the extensions to which
the fundamental series (no. 15)31 are susceptible, had I believed I should have
restricted myself to establishing precisely what is necessary for differentiating
functions. However, in my opinion, the pure differential calculus extends fur-
ther than we commonly think. In particular, the expansion of functions into
series belongs more to the substance of this calculus than to its application.
Furthermore, I wished to show how, from fundamental series, we may arrive at
something more general, in a very natural way. Here again, I am in opposition
to the Philosophe, at least in the method. We know with how much fuss he com-
municated a certain general formula to the highest scientific body of Europe,
and then to the public, from which he draws all of those formulas that we know
for the expansion of functions; that is, he descends where I am endeavoring to
ascend.

The general formula of the Criticiste gives Fx expanded according to the
successive products of the varied state of ϕx, namely

ϕx, ϕx · ϕ(x+ ξ), ϕx · (x+ ξ) · ϕ(x+ 2ξ), . . . ;

[155] where ξ is the constant difference in the variable x. The coefficients of
the various terms are very complicated functions of the differences of the same
functions, in which one must, after expanding, substitute one of the values of
x given by the solution of the equation ϕx = 0. No doubt, one has noticed

28Servois inserted the following footnote here: “This is formula (21) of the cited memoir,
borrowed from Euler, and from which the author deduces his formula (23), which contains the
germ of the error I am noting here. This formula of Euler’s, true in several particular cases,
is in general nothing more than a manifest falsity, because by supposing α = nπ, n being a
positive or negative whole number, we get n

4
π2 = 0.”

29In his “Essay,” Servois used the notation d
x
z and d

y
z for the partial differentials of a

function z of two variables. In general, when the function f (which we would call an operator)

applied only to one variable of z, Servois called it a partial function and denoted it by f
x
z or

f
y
z.
30[Euler 1789].
31These references are to §19 and §15 of [Servois 1814a].
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that this formula is itself but a particular case of our formula (23, no. 13)32.
Actually, it is sufficient to let

ϕx = ϕx, ϕ′x = ϕ(x + ξ), ϕ′′x = ϕ(x + 2ξ), . . . ,

and then
α = α, β = α+ ξ, γ = α+ 2ξ, . . . ,

to have, by our equations (23) and (27), the series and the coefficients of the
Philosophe.

To go from here to the series ordered according to the powers of ϕx, he sup-
poses ξ to be infinitely small and, under this pretext, he quite simply changes
the ∆’s into d’s. This might seem quite good to eyes afflicted with the infinites-
imal squint, but it is not just a matter of this; I was waiting for the details of
this transition, pushed all the way to one or another of the forms recognized
in the previous memoir (no. 1933). However, on this score he is marvelously
discreet. Indeed, see the tables of equivalent expressions (Refutation, etc. pages
18, 19, 33) which are bound together by these laconic sentences: “furthermore,
we will see that these simplified expressions may be put in the form . . . we may
easily transform those expressions into these . . . .” And, if you don’t wish to
take his word for it, have the courage to undertake his transformations . . . ! We
add to this that his lists of analytic expressions do not always present a well
articulated general law: in particular, such as the expressions denoted by the
letter N (p. 19). I have hinted at it (no. 13),34 and I positively affirm it here:
these difficulties in the details are a major flaw in the descending method (which
I would call synthetic, were I not [156] discussing it with a Criticiste), and the
absence of these in the ascending method gives this method a great advantage
over its rival.35

[157] Before finishing, I hope I may be permitted to present several reflec-
tions here on the application of transcendental philosophy and, in general, on
the application of [158] metaphysical systems to mathematics, reflections which
could only be given elsewhere with great difficulty, and which the subject that
occupies me seems to lead to in a very natural way.

[159] In reading Kant, I foresaw that geometers would, sooner or later, be-
come the object of petty criticisms by his sect. [160] In the prolegomenas of
his Critique of Pure Reason,36 one finds this very significant passage: (I’m fol-
lowing the Latin translation of Born) Cum enim vix unquam de mathesi suâ

32This is a reference to §13 of [Servois 1814a].
33[Servois 1814a, §19].
34This is a reference to §13 of [Servois 1814a].
35Here Servois begins a lengthy footnote, regarding material found within his “Essay on

the Principles of the Differential Calculus.” This footnote can be found in the appendix that
begins on page 19.

36Kant’s Critique of Pure Reason [Kant 1902] and Prolegomena to Any Future Metaphysics
[Kant 1912] are actually different books. Servois used the plural, lower case and unitalicized
“les prolégomènes,” as though there were more than one Prolegomena. Perhaps there was
something in the nature of F. G. Born’s 1796 four-volume Latin translation of the works of
Kant that confused him.
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philosophati sint (arduum sanè negotium) . . . . tritae regulae atque empiricè
usurpatae . . . . iis sunt instar axiomatum.37 However, I was far from imagining
up to [161] what point they would be mistreated. In this magnificent conclusion
to the Philosophie des mathématiques (p. 256ff), see with what superb disdain
he responds to the question: What was the state of mathematics, and above
all of algorithmie38, before this philosophy of mathematics? He repeats twenty
times: “We did not know it . . . We did not even suspect . . . We had no idea . . . .”

But are we really as impoverished as he says? And doesn’t the Philosophe
critique strut about somewhat at the expense of our plumage?

“Purely algebraic theories of logarithms and sines were not known . . . .”
Someone has already spoken against this allegation, citing, among others, the
work of Suremain-de-Missery (Theorie purement algébrique des quantitiés imag-
inaries; Paris 1801).

“The fundamental law of the theory of differences was not known . . . .” In
this way he describes the expression of the difference ∆µ of the product Fx ·fx,
in terms of the differences of Fx and fx, a formula which Taylor published long
ago in the Philosophical Transactions39 (vol. 30, page 676ff). It is certainly true
that we had not “recognized [it] as the fundamental law of the entire theory of
differences and differentials,” because it is not true that it enjoys this property.
The truly fundamental laws of these two theories are in the definitions of the
difference and the differential. From these definitions we deduce several general
facts, very useful in practice; the alleged law is numbered among them. In
addition, the Philosophe is well aware of the insufficiency of his law, when it is a
matter of differentiating a function of several variables, because he did not go so
far as to give the form of the expansions in differences and partial differentials.
But one must admire the subterfuge that he uses to preserve the universality
of this law. He asserts that the form in question “needs no artifice in order
to be deduced or proven . . . .” But if so, you are [162] all the more culpable of
having presented this form in a false formula. (Philosophe, etc., formula (bh),
page 116). We may compare this to the true formula that I gave in the previous
memoir (75), and which contains the philosophical law as a very particular case.

“The theory of grades and gradules40 was not even known . . . ” that is, that
we had not yet thought of creating new notation to represent expressions as
simple as41

∆m lnϕ(x+ µξ)
lnϕx

,
dm lnϕx

lnϕx
.

I can grant him this much, but nothing more. The new calculations of the
37“Indeed, whenever anything of mathesis is philosophisized upon (a truly lofty activity)

. . . trite rules and empirical things are seized upon . . . and these are the images of axioms.”
Translation by Prof. C. Edward Sandifer of Western Connecticut State University.

38Wroński uses the term algorithmie where we would use the term analysis.
39[Taylor 1717].
40Wroński defined grades and gradules analogously to differences and differentials, where

the increments in the variables are given exponentially instead of additively [Montferrier 1856,
pp. 96-103].

41We are using the modern ln notation, where Servois used L to denote the natural loga-
rithm.
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philosopher are too close to those of differences and those of differentials to
constitute a particular branch of analysis. Certainly, it would not be worth
the trouble of making the differential calculus itself an algorithm separate from
that of differences, if the differential were expressed as a function of differences
as simply as the gradule is expressed as a function of differentials. This is a
very common philosophical consideration, which suggested to analysts - Euler
in particular - the triple generation of numbers according to the formulas N =
P +Q, N = P ·Q, and N = PQ. From the same considerations it has escaped
none of them that we may let x vary, as z = ϕx, in three ways. That is, by
supposing that x becomes x + ξ, x · ξ, and xξ, and that as a consequence of
these hypotheses, the function z may also vary in three ways by becoming z+ξ,
z · ξ, and zξ. Because of this, in order to determine what becomes of z when
the increment ξ is repeated a certain number of times, there are in general nine
problems to solve. The calculus of differences and that of differentials were born
of the consideration of the first of these problems, that is, of the correspondence
between the varied states x + ξ and z + ξ . If the other problems were as
fecund, there would still remain [163] many new algorithms to create, so that
the enumeration presented in the transcendental philosophy, the branches of
what is called the Theory of the algorithmic constitution, would be far from
complete. However, analysts have noticed that the other problems reduce easily
to the first. However, the calculus of gradules seems immediately to suggest itself
in an important application, that which the philosopher used in his research on
the form of the roots of a determinate equation, expressed as a function of its
coefficients. This, at least, is what he would like us to conclude from a discussion
that occupies fourteen mortal pages in quarto (Philosophie, etc., pages 83-96),
bristling with the wildest algorithmic symbols. But when, unphased by all
this machinery, we take the trouble to discuss the arguments, to simplify the
calculations, and to translate the formulas into the common analytic language,
we cannot completely refuse to agree with the assertions of the author.

After having proposed the equation of identity

(a′ + x)(a′′ + x) . . . = A+Bx+ . . . = Ξ, (1)

we are told that we should use the differential calculus to find expressions of
A,B, . . . as functions of a′, a′′, . . . and that reciprocally it is by the calculus
of gradules that we ought to arrive at expressions of a′, a′′, . . . as functions of
A,B, . . .. “Indeed, the product (a′ + x)(a′′ + x) . . . could not be decomposed
into parts of the summation except by the differential calculus, and the sum
A+Bx+. . . cannot be composed into factors except by the calculus of gradules”
(ibid, page 83). The first proposition is false: we knew how to express coefficients
as functions of roots long before the discovery of the differential calculus. The
second proposition, which is nothing but a consequence of the first, at least if
we do not wish to introduce vague reasoning into analysis that undermines the
correctness of the science, is not even proved. [164] Using common analysis,
I will quite easily derive the result to which the philosopher, armed with his
gradules, is brought.

Here are hypothesis which are clearly permissible:
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When the the
factors a′ + x, a′′ + x, . . . function Ξ

become


1. (a′ + x)t

′−a, (a′′ + x)t
′′−a, . . . ,

2. (a′ + x)t
′−b, (a′′ + x)t

′′−b, . . . ,

3. (a′ + x)t
′−c, (a′′ + x)t

′′−c, . . . ,
. . . . . . . . . . . . . . . . . . . . . . . . ,

becomes


Ξn−a,
Ξn
′−b,

Ξn
′′−c,

. . .

For greater simplicity, we take only three factors. The first hypothesis gives

(a′ + x)t
′−a · (a′′ + x)t

′′−a · (a′′′ + x)t
′′′−a = Ξn−a.

Applying the second hypothesis to this result, we have

(a′+x)(t′−a)(t′−b) ·(a′′+x)(t′′−a)(t′′−b) ·(a′′′+x)(t′′′−a)(t′′′−b) = Ξ(n−a)(n′−b). (2)

If we had considered four factors, we would apply the third hypothesis to this re-
sult. In general, when there are m factors we apply m−1 successive hypotheses.
In the present case, let t′ = a, t′′ = b, t′′′ = c in (2), and it becomes42

a′′′ = Ξ
(n−a)(n′−b)
(c−a)(c−b) − x. (3)

If we make a, b, c infinitely small, then n and n′ will also be infinitely [165]
small. Because in general ax = 1 + x ln a, when x is infinitely small, equation
(3) becomes

a′′′ = {1 + (n− a)(n′ − b) ln Ξ}
1

(c−a)(c−b) − x. (4)

When we suppose “the arbitrary quantity x is equal to zero, for greater simplic-
ity” (ibid, page 90) this expression takes the form

a′′′ =
{

1 +N
1

∞1 · ∞2

}M∞′·∞′′
. (5)

This, quite seriously, is the unique result of the role that we entrusted to the
calculus of gradules, to ensure it a brilliant entry into the world. I dare to ask:
is it worth the trouble?

I remark that in (4) that we may dispose of the arbitrary value of x by
giving it the value of zero, but this hypothesis reduces Ξ to A, and consequently
nothing but the coefficient A enters into the right hand side of (5), and the
root a′′′ is no longer expressed except by a single coefficient of the equation.
What’s more, this hypothesis clearly contradicts the one he is obliged to make
further on (page 95), according to which the successive differentials of x, that
is dx, d2x, . . . , must satisfy certain conditions, which as it is said in passing,

42In the original there was a typographical error in (3), where the power of Ξ was given as
(n−a)(n′−b)
(c−a)(c′−b)

.
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would have a great need to be reconciled among themselves. In any case, even
admitting that the right hand side of (5) is a function of the coefficients A, B,
. . . , what consequences do we intend to draw from it? That “the quantity a′′′

is an irrational quantity or radical of the order 3 - 1” (page 90), or of the form

a′′′ = ϕ

{
β

√
α
√
n+ n′ + n′′

}
, (6)

where n, n′ and n′′′ are functions of the coefficients A, B, . . . .
[166] Here the philosopher has completely wrapped himself in the transcen-

dental mystery. We perceive nothing less than that his arguments reduce to the
following: the expression on the right hand side of (6) may be put into the right
hand side of (5), thus this expression represents the form of a′′′. I deny this
conclusion. In order for two things to be pronounced equal to each other when
they are equal to a third thing it is necessary that these be determinate. Now
the expression in the right hand side of (5) is completely indeterminate, and
it reduces to the form N

∞
∞ or N

0
0 . What would we say about the logic of the

analyst who, having discovered at the end of his calculations the two expressions
A = 0

0 and B = 0
0 , would conclude from them that A = B?

“The fundamental law of the theory of numbers was unknown . . . .” For this
he gives us an algebraic theorem (ibid, equation (D), page 67) which is not the
fundamental law of this theory. Rather it is the well-known theorem

xn − an

x− a
= xn−1 + axn−2 + . . .+ an−2x+ an−1,

of which the first result is a somewhat distant consequence. The whole numbers
are the terms of an indefinite series of numbers which has zero as its origin and
1 as the difference between any two consecutive terms. This is their definition
and consequently the true fundamental law of their theory. The Philosophe
hastens to conclude from his theorem the impossibility of submitting the prime
numbers to a law (ibid, page 68). However, I would be very curious to see how he
reconciles this consequence with a singular remark that Lambert had recorded
in his Essai d’architectonique (Riga, 1771, page 507), the substance of which is
the following. In the right-hand side of the equation

x

1− x
+

x2

1− x2
+ . . .+

xm

1− xm
+ . . . = x+2x2 +2x3 +3x4 +2x5 +4x6 +2x7 + . . . ,

each coefficient is equal to the number of divisors of the exponent,[167] so that
all the terms and only those terms with coefficient 2 have a prime exponent.

“The theoretical resolution of equations of equivalence was entirely problem-
atical . . . ” Despite the promises of philosophy, it is still at the same point. The
formulas assigned to roots (ibid, page 94) are neither more or less problematical
than they had been, and the general resolution of (literal) equations of all de-
grees, given by the philosopher (Paris, 1812), is certainly quite far from having
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relieved all doubts. See, among others, those of my estimable friend Professor
Gergonne, in this journal43 (vol. III, page 51, 137, 206).

“The solution of differential equations was still quite imperfect . . . .” Phi-
losophy has greatly advanced it! I am not at all persuaded. Rather, I would
have desired that he made a little mention of the general methods proposed by
Fontaine, Condorcet, Pezzi, etc., even had it been for no other reason than to
oppose them.

“The law of the general form of series (the expansion of Fx, following the
powers of ϕx), and even less the law of the most general form of these technical
functions (with an expansion following the products of the varied states), were
not at all known . . . .” The first of these, however, was but a particular case
of Burman’s formula that I have given (112).44 It is found in the Calcul des
derivations45 of Arbogast (no. 287). The other, as I have said, is a particular
case of my formula (23), known at least for the most general cases; it is as
follows

Fx = A+Bxϕx+ Cx2ϕx · ϕ′x+Dx3ϕx · ϕ′x · ϕ′′x+ . . .

because the solution of the problem of article 348 of Calcul des derivations
reduces to this. Let us add that Euler was brought to something even more
general in a very original memoir46 (Nova Acta Petrop. 1786) on the famous
series of Lambert, when he began with this expression [168]

zn = 1 + ϕn+ ϕ′n+ ϕ′′n+ . . . .

“Taylor’s law extends only to functions given immediately, and not to those
that are given by equations . . . ” (Refutation, etc., page 30). We have demon-
strated the contrary in the previous memoir (no. 19).

“To deduce the expansion of x (from the given equation 0 = ϕ(x, a)), fol-
lowing the powers of ϕa, it is already much more than what has been done up
till now in algorithmie” (ibid, page 32). This pretension should be appreciated
after having read articles 318 through 326, inclusive, of Calcul des derivations.

I shall be even more brief on the other question of the Criticiste: What will
the state of algorithmie be, after this philosophy of mathematics? I see the
promises. The miser himself is not stingy. And the announcements of results
. . . well, listen, that is another thing all together. (Refutation, etc. page 38).

“If the philosophy had already given the laws of mathematics . . . .” No doubt,
these laws belong to philosophy in general, and not to a particular system. The
Peripatetics Hertinus, Dasypodius and Comp. had based geometry on syllo-
gisms. The philosophers of Port-Royal, the new Procustes, had tortured this
same geometry to reduce it to the proportions of their narrow logic. A Ger-
man philosopher, who began as a disciple of Kant, but defected to the opposite

43These are three articles written by Gergonne in the Annales de mathématiques pures et
appliquées.

44[Servois 1814a].
45[Arbogast 1800].
46[Euler 1789].

Bradley, Robert E. and Salvatore J. Petrilli, Jr., “Servois’ 1814 Essay on the Principles of
the Differential Calculus, with an English Translation,” Loci: Convergence (April 2010),
DOI: 10.4169/loci003487



REFLECTIONS 18

ranks, came to persuade the mathematician Langsdorf that he should re-found
the principles of this science by admitting spatial points into geometry. This is
just a cross-section of the services that these systems render to mathematics.

“And what is guaranteed to them by the rigorous explanation of the diffi-
culties . . . .” Yes, the imaginary difficulties of the differential calculus explained
by a critical antinomy ! The paradoxes of [169] Kramp resolved by zeros, or by
even or odd infinitesimals, etc.!

“And above all, by the discovery of the fundamental laws of this science . . . .”
I will repeat, there are no fundamental laws other than the definitions, which
need no discovery.

“Laws that ought to bring us to the solution of great problems that we could
not resolve before today . . . ” Fiat! Fiat!

“What is left for geometers to do? Two things: the first . . . , to receive the
principles of mathematics from philosophy . . . ” This would be my position, if
philosophy were a body of revealed doctrine.

“The second is to study transcendental philosophy, which is the foundation
of this latter . . . .” However, what if the result of this study were too no longer
to believe in transcendentalism, or at least to doubt it? Because, after all, it
is a human opinion. Furthermore, it is a system shrouded in darkness that
few people are able to pierce. Ch. Villers accuses the academics of Berlin of
having seen nothing; others pay them the same compliment. In the midst of
this brouhaha of philosophical discussions across the Rhine, we hear only this
refrain . . . . “I am not being understood . . . !” And they intend to establish the
clearest and most certain of the sciences on a basis of this kind! . . .

As for me, I declare, in closing, that I hold provisionally to the philosophy
of mathematics that d’Alembert, as worthy as any other, and as philosopher
and as mathematician, set forth these principles. “Because the certainty of
mathematics,” he says, (Encyclopédie47, Art. APPLICATION ) “comes from
the simplicity of its object, its metaphysics should [not] be too simple and too
illuminating. It should always be reducible to clear and precise notions, without
obscurity. Indeed, how could the consequences be certain and self-evident, if
the principles were not also.” Also, he adds that this metaphysics (Ibid, art.
ÉLÉMENS ) “is simple and easy and, so to speak, [170] popular, and it is also
precious. We might even say that the ease and simplicity are its touchstone.”

Moreover, quite convinced that I am right to oppose the Philosophie critique,
I only wish to disagree with his philosophy. I hasten, therefore, to declare that
it pleases me to recognize, in the author of Philosophie des mathématiques, a
very able and learned geometer whose works may become extremely useful to
the science, if he manages to escape the influence of a philosophical system to
which, according to me, he has rather unphilosophically subjected himself.

La Fère, August 10, 1814.
47[Diderot 1751].
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Appendix:
Servois’ Footnote Beginning on Page 156

[156] I have said (no. 15)48 that, by a simple change in the method of ar-
rangement, we may change from an expansion following the products

(
x−p
α

)
,(

x−p
α

) (
x−p−α
α

)
,
(
x−p
α

) (
x−p−α
α

) (
x−p−2α

α

)
, . . . , to an expansion following the

powers
(
x−p
α

)
,
(
x−p
α

)2
,
(
x−p
α

)3
, . . . . We will see, perhaps with some interest,

how I can justify this assertion.
I will take as the simplest case, the expansion of F (x + nα). It takes only

a little attention, after the first attempts at expansion, to recognize that we
have49

F (x+ nα) = Fx +n
1

{
∆Fx− 1

2∆2Fx+ 1
3∆3Fx− . . .

}
+ n2

1·2

{
∆2Fx− 3

3∆3Fx+ 11∆4Fx
3·4 − . . .

}
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ nm

1·2···m

{
∆mFx− A∆m+1Fx

m+1 + B∆m+2Fx
(m+1)(m+2) − . . .

}
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


(1)

where A, B, . . . are the coefficients in the series that multiplies nm

1·2···m , a series
that I will denoted by Π in what follows, for simplicity. According to the gen-
eral theory of equations, A = S1(1, 2, . . . ,m), B = S2(1, 2, . . . ,m + 1), C =
S3(1, 2, . . . ,m + 2), . . . ,M = Sµ(1, 2, . . . ,m + µ − 1), where S1, S2, S3, . . . ,
Sµ is the series of products taken one-by-one, two-by-two, three-by-three, . . . ,
µ-by-µ, where µ is the rank of the letter M , when A is assumed to be the
first. I will denote by P the series that multiplies nm+1

1·2···m+1 . Its coefficients are
A′

m+2 , B′

(m+2)(m+3) , . . . ; where [157] A′, B′, . . . , are what becomes of A, B, . . . ,
respectively, when we change m to m + 1. Now, it is clear that we have the
relations

A′ = A+m+ 1, B′ = B +A′(m+ 2), C ′ = C +B′(m+ 3), . . . ,
M ′ = M + L′(m+ µ),

from which we immediately conclude

M ′ = M + L(m+ µ) +K(m+ µ− 1)(m+ µ) + . . .
+A(m+ 2) · · · (m+ µ) + (m+ 1) · · · (m+ µ). (2)

To abbreviate, I let50

A =
A

m+ 1
, B =

B

(m+ 1)(m+ 2)
, . . . ; A

′
=

A′

m+ 2
, B
′

=
B′

(m+ 2)(m+ 3)
, . . . ,

48[Servois 1814a, §15].
49In the original, Servois had m−1 in place of m+1 in the denominator of the last fraction

below.
50For clarity we are using overlines where Servois simply used Roman capitals.

Bradley, Robert E. and Salvatore J. Petrilli, Jr., “Servois’ 1814 Essay on the Principles of
the Differential Calculus, with an English Translation,” Loci: Convergence (April 2010),
DOI: 10.4169/loci003487



APPENDIX 20

which gives

∆mFx−A∆m+1Fx+B∆m+2Fx− . . . = Π (3)

∆m+1Fx−A′∆m+2Fx+B
′
∆m+3Fx− . . . = P (4)

and the general relation (2) becomes

M ′ =
m+ 1

m+ 1 + µ

{
M + L+K + . . .+B +A+ 1

}
. (5)

Here I let m = 0. Thus, (1) A,B,C, . . . , are zero and I have

A
′

=
1
2
, B
′

=
1
3
, C
′

=
1
4
, . . . , M

′
=

1
1 + µ

,

as we already knew (1). Next, I let m = 1 in (5) and using the values of
A,B,C, . . . , corresponding to m = 0, I have [158]

M
′

=
2

2 + µ

{
M + L+ . . .+A+ 1

}
=

2
2 + µ

{
1

1 + µ
+

1
µ

+
1

µ− 1
+ . . .+

1
2

+ 1
}
.

(6)

Now, we have the equation of identity

(2 + µ− 1)
1 + µ

· 1 +
(2 + µ− 2)

µ
· 1

2
+

(2 + µ− 3)
µ− 1

· 1
3

+ . . .

+
(2 + µ− µ− 1)

1
· 1
µ+ 1

= 1 +
1
2

+
1
3

+ . . .+
1

1 + µ
,

or rather

(2 + µ)
{

1
1 + µ

+
1

µ · 2
+

1
(µ− 1) · 3

+ . . .+
1

2µ
+

1
1 + µ

}
−
{

1
1 + µ

+
1
µ

+ . . .+
1
2

+ 1
}

= 1 +
1
2

+
1
3

+ . . .+
1

1 + µ
,

from which we conclude

1
1 + µ

+
1

µ · 2
+

1
(µ− 1) · 3

+ . . .+
1

2µ
+

1
1 + µ

=
2

2 + µ

{
1

1 + µ
+

1
µ

+ . . .+
1
2

+ 1
}
.

In other words, by (6) we have, when m = 1,

M
′

= M +
1
2
L+

1
3
K + . . .+

1
µ− 1

B +
1
µ
A+

1
µ+ 1

(7)
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In general, if we have relation (7) in the case of m, I say that, for the case m+1,
we have

M
′′

= M
′
+

1
2
L
′
+

1
3
K
′
+ . . .+

1
µ− 1

B
′
+

1
µ
A
′
+

1
µ+ 1

. (8)

Indeed, according to hypothesis (7) and the general relation (5), we have [159]

M
′

= M + 1
2L+ 1

3K + . . . = m+1
m+1+µ

(
M + L+K + . . .

)
,

L
′

= L+ 1
2K + 1

3I + . . . = m+1
m+µ

(
L+K + I + . . .

)
,

K
′

= K + 1
2I + 1

3H + . . . = m+1
m−1+µ

(
K + I +H + . . .

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From this, I draw these two results

1. M + L+K + . . . =
m+ 1 + µ

m+ 1
·M ′,

L+K + I + . . . =
m+ µ

m+ 1
L
′
,

K + I +H + . . . =
m+ µ− 1
m+ 1

K
′
, . . . ,

2. M
′
+L
′
+K

′
+. . . = M+L+K+. . .+ 1

2 (L+K+I+. . .)+ 1
3 (K+I+H+. . .)+. . . ,

Thus, substituting the first into the second, we have

M
′
+L

′
+K

′
+ . . . =

(m+ 1 + µ)
m+ 1

·M
′

1
+

(m+ µ)
m+ 1

· L
′

2
+

(m+ µ− 1)
m+ 1

· K
′

3
+ . . . .

Consequently,

(m+ 1)
(
M
′
+ L

′
+K

′
+ . . .

)
= (m+ 2 + µ)

(
M
′
+
L
′

2
+
K
′

3
+ . . .

)

−
(
M
′
+ L

′
+K

′
+ . . .

)
,

which gives,

m+ 2
m+ 2 + µ

{
M
′
+ L

′
+K

′
+ . . .

}
= M

′
+

1
2
L
′
+

1
3
K
′
+ . . . .

According to (5), the left hand side of this equation is M
′′
. Therefore, [159]

relation (8) is true whenever relation (7) holds. However, this latter is proven
for m = 0 and m = 1, thus it is true in general. Applying this to equation (4),
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we have

P = ∆m+1Fx−A∆m+2Fx+B∆m+3Fx− C∆m+4Fx+ . . .

−1
2

∆m+2Fx+
1
2
A∆m+3Fx− 1

2
B∆m+4Fx+ . . .

+
1
3

∆m+3Fx− 1
3
A∆m+4Fx+ . . .

−1
4

∆m+4Fx+ . . . .

The first horizontal line is the same (3) as ∆Π, the second is the same as− 1
2∆2Π,

the third is the same as 1
3∆3Π, . . . . Therefore

P = ∆Π− 1
2

∆2Π +
1
3

∆3Π− 1
4

∆4Π + . . . .

This is the relation that holds between two consecutive series, the coefficients
of n, in the expansion of F (x+nα), following the powers of n, a relation which
we have established in another manner (no. 15). From this it follows that, if we
let

∆Fx− 1
2

∆2Fx+
1
3

∆3Fx− . . . = dFx,

as in (no. 15), we have

Π = dmFx, P = dm+1Fx.

In absolutely the same way, we go from an expansion of (1 + b)n, given by
the binomial formula, to the expansion following the powers of n. From this we
see that it is sheer laziness on the part of analysts to introduce the infinite in
order to make this change.
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lorsqu’on arrête cette série à un terme quelconque,” Journal de l’Ecole
Polytechnique, vol. 6, no. 13, 148-181.

[Arbogast 1800] Arbogast, L. F. A. (1800). Du calcul des dérivations. Stras-
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calcul intégral, 3 vols. Paris: Duprat.

[Lagrange 1797] Lagrange, J. (1797). Théorie des fonctions analytiques. Paris:
Imprimerie de la République.
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