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1 Introduction

In this project we will study the basics of propositional and predicate logic based on the original
historical source Principia Mathematica [13] by Russell and Whitehead. Published in three volumes
between 1910 and 1913, Principia was a culmination of work that had been done in the preceding
century on the foundations of mathematics. Since the middle of the nineteenth century, such
thinkers as George Boole (1815–1864), Augustus De Morgan (1806–1871), Charles Sanders Peirce
(1839–1914), Ernst Schröder (1841–1902), Gottlob Frege (1848–1925), and Giuseppe Peano (1858–
1932) had been developing axiomatic bases for logic and the foundations of mathematics. This
research program found its culmination in Principia, which had a tremendous influence on the
development of logic and the foundations of mathematics in the twentieth century.

Logic is a branch of science that studies correct forms of reasoning. It plays a fundamental
role in such disciplines as philosophy, mathematics, and computer science. Like philosophy and
mathematics, logic has ancient roots. The earliest treatises on the nature of correct reasoning were
written over 2000 years ago. Some of the most prominent philosophers of ancient Greece wrote of
the nature of deduction more than 2300 years ago, and thinkers in ancient China wrote of logical
paradoxes around the same time. However, though its roots may be in the distant past, logic
continues to be a vibrant field of study to this day.

Modern logic originated in the work of the great Greek philosopher Aristotle (384–322 BCE), the
most famous student of Plato (c.427–c.347 BCE) and one of the most influential thinkers of all time.
Further advances were made by the Greek Stoic philosopher Chrysippus of Soli (c.278–c.206 BCE),
who developed the basics of what we now call propositional logic.1

For many centuries the study of logic was mostly concentrated on different interpretations of
the works of Aristotle, and to a much lesser degree of those of Chrysippus, whose work was largely
forgotten. However, all the argument forms were written in words, and lacked formal machinery
that would create a logical calculus of deduction with which it would be easy to work.

The great German philosopher and mathematician Gottfried Leibniz (1646–1716) was among
the first to realize the need to formalize logical argument forms. It was Leibniz’s dream to create
a universal formal language of science that would reduce all philosophical disputes to a matter of
mere calculation by recasting the reasoning in such disputes in such a language.

The first real steps in this direction were taken in the middle of the nineteenth century by the
English mathematician George Boole. In 1854 Boole published An Investigation of the Laws of
Thought [4], in which he developed an algebraic system for discussing logic. Boole’s work ushered
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1More on the life and work of Chrysippus can be found in [5]. Also, another article in this series [9] offers an
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in a revolution in logic, which was advanced further by Augustus De Morgan, Charles Sanders
Peirce, Ernst Schröder, and Giuseppe Peano.2

The next key step in this revolution in logic was made by the great German mathematician and
philosopher Gottlob Frege. Frege created a powerful and profoundly original symbolic system of
logic, as well as suggested that the whole of mathematics can be developed on the basis of formal
logic, which resulted in the well-known school of logicism.3

By the early twentieth century, the stage was set for Russell and Whitehead to give a modern
account of logic and the foundations of mathematics in their influential treatise Principia Mathe-
matica.

Alfred North Whitehead (1861–1947), the son of a vicar in the Church of England [10, p. 23],
was born in Ramsgate, Kent, England, and studied mathematics at Trinity College, Cambridge.
In 1884, Whitehead was elected a fellow at Trinity College, and would teach mathematics there
until 1910. After his tenure at Trinity College, Whitehead spent time at University College London
and Imperial College London, engaging in scholarly work in philosophy. He later emigrated to the
United States, and taught philosophy at Harvard University until his retirement in 1937 [8].

While a fellow at Trinity College, Whitehead met Bertrand Russell (1872–1970), who was
then a student there [10, p. 223]. Russell was born into an aristocratic family. His grandfather,
John Russell, was twice Prime Minister to Queen Victoria [11, p. 5]. Russell graduated from
Trinity College in 1893. He went on to become one of the most influential intellectuals of the
twentieth century, playing a decisive role in the development of analytic philosophy. Russell was
also active in a number of political causes. Notably, he was an anti-war activist and advocated
nuclear disarmament. In fact, he served a six-month prison sentence for writing a newspaper
editorial protesting World War I [11, p. 521]. Russell was a prolific writer, and in 1950 was
awarded the Nobel Prize in Literature “in recognition of his varied and significant writings in
which he champions humanitarian ideals and freedom of thought” [12].

Around 1901, Russell and Whitehead began collaborating on a book on logic and the founda-
tions of mathematics [10, p. 254–258]. This resulted in an epochal work, Principia Mathematica,
which would later be recognized as a significant contribution to logic and the foundations of math-
ematics. Influenced by the work of Frege, Peano, and Schröder, Russell and Whitehead developed
an axiomatic basis for logic and the foundations of mathematics, and tried to free the foundations
of mathematics of the existing contradictions.

In what follows, we will introduce the basic principles of contemporary logic through the devel-
opment of Russell and Whitehead’s Principia Mathematica.

2 Propositional Logic

In this section we begin our study of propositional logic from Principia Mathematica. The chief
object of our investigation will be propositions—sentences which are either true or false but not
both. Thus, we are concerned with sentences such as “Benjamin Franklin was the first president
of the United States” and “Two plus two is equal to four.” Clearly the first of the two sentences is
false and the second one is true. Therefore, both of the sentences are propositions. On the other
hand, a sentence such as “Who was the author of Hamlet?” is not a proposition because it is neither
true nor false. Hence, we will not be concerned with this type of sentence.

2For more information on the life and work of these scientists, see, e.g., [7]. Also, another article in this series
[2] offers an historical project on the work of Boole and Peirce, while [3] offers an historical project on the work of
Peano.

3For more information on Frege’s life and work, see, e.g., [6, 7]. Frege’s formal treatment of propositional logic is
also discussed in another article in this series [9].
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To carry out our study of propositions, we introduce the concept of a propositional variable,
which stands for an arbitrary but undetermined proposition. The letters p, q, r and so forth will
be used to denote propositional variables.

Logical connectives

We now turn to the first major topic in propositional logic, the question of how to form complicated
propositions out of simpler ones. Russell and Whitehead address this question in the opening pages
of Principia Mathematica:

∞∞∞∞∞∞∞∞

An aggregation of propositions (...) into a single proposition more complex than its constituents, is
a function with propositions as arguments. [13, Vol. 1, p. 6]

∞∞∞∞∞∞∞∞

Thus, more complex propositions are formed from simpler propositions by means of functions
that take propositions as arguments. What are the functions that yield more complex propositions
from simpler ones? Russell and Whitehead employ four fundamental functions.

∞∞∞∞∞∞∞∞

...They are (1) the Contradictory Function, (2) the Logical Sum, or Disjunctive Function, (3) the
Logical Product, or Conjunctive Function, (4) the Implicative Function. These functions in the sense
in which they are required in this work are not all independent; and if two of them are taken as
primitive undefined ideas, the other two can be defined in terms of them. It is to some extent—though
not entirely—arbitrary as to which functions are taken as primitive. Simplicity of primitive ideas and
symmetry of treatment seem to be gained by taking the first two functions as primitive ideas. [13,
Vol. 1, p. 6]

∞∞∞∞∞∞∞∞

In modern terminology the Contradictory Function of Russell and Whitehead is known as nega-
tion (“not”), the Logical Sum or Disjunctive Function as disjunction (“or”), the Logical Product
or Conjunctive Function as conjunction (“and”), and the Implicative Function as implication (“if,
then”).

Russell and Whitehead mention that the four functions are not independent of each other. Later
on we will see why this is so. For now, let us read how Russell and Whitehead define these four
functions.

∞∞∞∞∞∞∞∞

The Contradictory Function with argument p, where p is any proposition, is the proposition which
is the contradictory of p, that is, the proposition asserting that p is not true. This is denoted by ∼p.
Thus ∼p is the contradictory function with p as argument and means the negation of the proposition
p. It will also be referred to as the proposition not-p. Thus ∼p means not-p, which also means the
negation of p.

The Logical Sum is a propositional function with two arguments p and q, and is the proposition
asserting p or q disjunctively, that is, asserting that at least one of the two p and q is true. This is
denoted by p ∨ q. Thus p ∨ q is the logical sum with p and q as arguments. It is also called the logical
sum of p and q. Accordingly p ∨ q means that at least p or q is true, not excluding the case in which
both are true.
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The Logical Product is a propositional function with two arguments p and q, and is the proposition
asserting p and q conjunctively, that is, asserting that both p and q are true. This is denoted by p.q
(...). Thus p.q is the logical product with p and q as arguments. It is also called the logical product of
p and q. Accordingly p.q means that both p and q are true. It is easily seen that this function can be
defined in terms of the two preceding functions. For when p and q are both true it must be false that
either ∼p or ∼q is true. Hence in this book p.q is merely a shortened form of symbolism for

∼(∼p ∨ ∼q)

The Implicative Function is a propositional function with two arguments p and q, and is the proposition
that either not-p or q is true, that is, it is the proposition ∼p ∨ q. Thus if p is true, ∼p is false, and
accordingly the only alternative left by the proposition ∼p∨ q is q is true. In other words if p and ∼p∨ q
are both true, then q is true. In this sense the proposition ∼p∨q will be quoted as stating that p implies
q. The idea contained in this propositional function is so important that it requires a symbolism which
with direct simplicity represents the propositions as connecting p and q without the intervention of ∼p.
But “implies” as used here expresses nothing else than the connection between p and q also expressed
by the disjunction “not-p or q.” The symbol employed for “p implies q,” i.e. for “∼p ∨ q,” is “p ⊃ q.”
This symbol may also be read “if p, then q.” [13, Vol. 1, pp. 6–7]

∞∞∞∞∞∞∞∞

The notation used to denote the four fundamental functions of propositions changed consider-
ably in the decades following the publication of Principia. Today the conjunction of the propositions
p and q is written as p ∧ q rather than p.q, and the symbol → is now used in place of Russell and
Whitehead’s ⊃.4 Contemporary logicians also refer to the four fundamental functions of proposi-
tions of Principia Mathematica simply as logical connectives. In what follows, we will adopt modern
notation and terminology. We call propositions p, q, r, . . . elementary propositions, and propositions
built from elementary propositions by means of logical connectives compound propositions. State-
ments of the form p→ q are referred to as conditional statements or conditionals.

Remark 1. There is an apparent ambiguity in reading propositions like ∼ p ∨ q. The proposition
can be read as either (∼p) ∨ q (i.e., as the logical sum of ∼p and q) or as ∼(p ∨ q) (i.e., as the
result of applying the contradictory function to p ∨ q). This ambiguity is easily resolved by the
agreement that ∼ binds stronger than any of ∨,∧,→. Thus, ∼p∨ q is read as (∼p)∨ q rather than
∼(p ∨ q). Similarly, we agree that ∨ and ∧ bind stronger than →. For example, the proposition
p ∨ q → r should be read as (p ∨ q) → r, and the proposition ∼p ∧ q → r ∨ p should be read as
((∼p) ∧ q)→ (r ∨ p).

Our first goal is to obtain a good understanding of propositions and of how the four logical
connectives that Russell and Whitehead introduced yield more complex propositions out of simpler
ones.

Exercise 2.1. Which of the following sentences are propositions?

(a) The New York Yankees have never won a World Series.

(b) 2 is even.

(c) Please close the door.

(d) The square root of 109.

4Some authors also use ⇒ in place of ⊃.
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(e) The sum of two even integers is even.

(f) What is the capital of France?

For the sentences that are propositions, determine whether they are true or false.

Exercise 2.2. Let p denote the proposition “All mammals have four legs,” q denote the proposition
“All dogs have four legs,” and r denote the proposition “All dogs are mammals.” Represent each
of the following propositions using the four fundamental functions of propositions of Principia
Mathematica.

(a) Not all dogs have four legs.

(b) All mammals have four legs and all dogs have four legs.

(c) Not all mammals have four legs or not all dogs have four legs.

(d) If all mammals have four legs and all dogs are mammals, then all dogs have four legs.

(e) If not all dogs have four legs, then not all mammals have four legs or not all dogs have four
legs.

Which of the above are true and which are false?

Exercise 2.3. Let p denote the proposition “9 is odd,” q denote the proposition “81 is the square
of 9,” and r denote the proposition “81 is odd.” Write each of the following propositions verbally
in words.

(a) p ∧ q → r

(b) q ∧ r → p

(c) ∼r → (∼p ∨ ∼q)

(d) p ∨ ∼(q ∧ r)

Determine which of the above are true and which are false.

Truth-values and truth tables

Having developed a language for discussing the logic of propositions, we turn to the task of under-
standing how the notion of truth relates to our symbolic logic of propositions. In particular, we
develop a framework for understanding the truth and falsity of complex propositions based on the
truth and falsity of simpler ones. Principia Mathematica addresses this issue:

∞∞∞∞∞∞∞∞

Truth-values. The “truth-value” of a proposition is truth if it is true, and falsehood if it is false. It
will be observed that the truth-values of p ∨ q, p.q, p ⊃ q, ∼p (...) depend only on those of p and q,
namely the truth-value of “p ∨ q” is truth if the truth-value of either p or q is truth, and is falsehood
otherwise; that of “p.q” is truth if that of both p and q is truth, and is falsehood otherwise; that of
“p ⊃ q” is truth if either that of p is falsehood or that of q is truth; that of ∼p is the opposite of that
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of p (...). [13, Vol. 1, p. 8]

∞∞∞∞∞∞∞∞

Remark 2. In everyday English, propositions of the form “p or q” are usually intended to mean
that either p is true or q is true, but not both. For example, in ordinary English the “or”-statement
“the car was red or blue” means that the car was either red or blue, but not both red and blue.
The logical connective “or” in such statements is called an exclusive “or”. However, according to
Principia Mathematica, the connective “∨” expresses a different sort of “or”—for “p∨q” is true if at
least one of p and q is true. The connective ∨ is called an inclusive “or” because the truth of “p∨q”
allows for the possibility that both p and q are true. In logic and mathematics, “or”-statements
always employ the inclusive “or” rather than the exclusive “or”.

Remark 3. The truth-values of the implication “p → q” given in Principia Mathematica are
somewhat different than one might expect. Russell and Whitehead indicate that “p→ q” is true if
either p is false or q is true; so, in particular, they regard statements of the form “if p, then q” as
true if p is false. This way of thinking about “if, then” statements may at first seem unusual, but
one may understand the motivation for doing so if one thinks of “p → q” as being analogous to a
promise that if p holds true, then q will also hold true. If it so happens that p is not true, then
the promise is unbroken regardless of the truth-value of q, and so “p→ q” is true. The promise is
broken only if p holds true, but q happens to be false. This is the only situation in which we regard
“p → q” as being false. Note that an implication “if p, then q” which is true because p is false is
referred to as vacuously true.

Exercise 2.4. If the truth-value of p is truth and the truth-values of q and r are falsehood, compute
the truth-values of the following compound propositions.

(a) (p ∨ q) ∨ r

(b) p→ (p ∧ q)

(c) ∼(p ∧ r)→ ∼q
We now understand how to determine the truth-value of a compound proposition from the

truth-values of the propositional variables of which it is composed. But we can do better than
this. We can design a general method, which will allow us to calculate all possible truth-values of
a compound proposition from all possible truth-values of the propositional variables of which it is
composed. Such a method was devised independently by the great German philosopher Ludwig
Wittgenstein (1889–1951) and the American logician Emil Post (1897–1954). The method employs
truth tables, tables which list all the possible truth-values of the propositional variables contained
in a compound proposition along with the corresponding truth-values of the compound proposition
itself. For example, if p is a propositional variable, then the truth table of the compound proposition
∼p is as follows:

p ∼p
T F
F T

Here the possible truth-values for the propositional variable p are listed in the column on the
left, and the corresponding truth-values of the proposition ∼p are listed in the column on the right.
Truth is denoted by T and falsehood is denoted by F.

Compound propositions which contain more propositional variables have more complicated
truth tables. For example, if p and q are propositional variables, then the truth table for the
proposition p ∨ q is:
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p q p ∨ q
T T T
T F T
F T T
F F F

When three or more propositional variables occur in a compound proposition, care must be
taken to guarantee that every possible combination of truth-values of the propositional variables
appears in the truth table. For example, the truth table of the proposition (p ∧ q) → r looks as
follows:

p q r p ∧ q (p ∧ q)→ r

T T T T T
T T F T F
T F T F T
T F F F T
F T T F T
F T F F T
F F T F T
F F F F T

Notice that the truth-values of the propositional variables p, q, and r are listed systematically
in this truth table: the truth-values for p are written in alternating groups of four (four Ts followed
by four Fs), those for q are written in alternating groups of two, and those for r alternate with
each successive entry. This method of organizing the entries in the truth table guarantees that
every possible assignment of truth-values appears in the truth table. A similar organization may
be used in constructing the truth table of a compound proposition that contains more than three
propositional variables.

Notice also that the truth-values of the compound proposition p∧ q are listed in the truth table
in order to allow us to compute the truth-values of the more complicated proposition (p ∧ q) → r
more easily. When constructing the truth table of a complicated compound proposition, including
truth-values for constituent compound propositions (like p ∧ q in this example) is often helpful.

Exercise 2.5. Construct truth tables for each of the following propositions.

(a) p ∧ q

(b) p→ q

(c) (p ∨ q)→ r

(d) p→ (∼q ∧ r)

(e) (p→ (q → r))→ ((∼p ∨ ∼q)→ r)

Logical equivalence and biconditionals

In some cases, different propositions are, in some sense, logically the same. For example, the
propositions “9 is odd and 81 is the square of 9” and “81 is the square of 9 and 9 is odd” are
somehow alike despite having different symbolic representations. More generally, if p and q are
propositions, the propositions p∧ q and q ∧ p apparently have the same meaning. This property of
being logically alike, called logical equivalence, is one of the most important concepts in propositional
logic. Principia Mathematica introduces logical equivalence as follows:
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∞∞∞∞∞∞∞∞

The simplest example of the formation of a more complex function of propositions by the use of
these four fundamental forms is furnished by “equivalence.” Two propositions p and q are said to be
“equivalent” when p implies q and q implies p. This relation between p and q is denoted by “p ≡ q.”
Thus “p ≡ q” stands for “(p ⊃ q).(q ⊃ p).” It is easily seen that two propositions are equivalent when,
and only when, they are both true or are both false. [13, Vol. 1, p. 7]

∞∞∞∞∞∞∞∞

Here Russell and Whitehead have defined the notion of logical equivalence, but they have also
introduced a new logical connective. In modern terms, this new logical connective is written using
the symbol ↔ and the proposition “p ↔ q” is taken to stand for “(p → q) ∧ (q → p)”. This
new connective is known as the biconditional, and statements of the form “p ↔ q” are called
biconditional statements.

It is very important to distinguish between the biconditional statement “p↔ q” and the logical
equivalence of p and q. As the basic logical connectives ∼, ∨, ∧, and →, the biconditional ↔ is
also a logical connective. On the other hand, two propositions p and q are logically equivalent when
p and q have the same truth-values (both are true or both are false). We will see later that two
propositions p and q are logically equivalent if and only if the biconditional p ↔ q is always true,
i.e. the biconditional is true irrespective of the truth of p or q.

How can we determine whether two given propositions are logically equivalent? In order to do
so, we must be able to guarantee that the propositions have the same truth-value irrespective of the
truth-values of the elementary propositions of which they are composed. At first this may seem like
a daunting task. However, the use of truth tables makes it a simple matter to determine whether
two propositions are logically equivalent. In fact, since the truth tables for the propositions p and
q list the truth-values for p and q under all possible assignments of truth-values for the elementary
propositions of which they are built, p and q are logically equivalent if and only if they have the
same truth tables.

An example may better illustrate this point. We shall use truth tables to establish the logical
equivalence of the propositions (p ∨ q) ∧ r and (p ∧ r) ∨ (q ∧ r):

p q r (p ∨ q) ∧ r (p ∧ r) ∨ (q ∧ r)
T T T T T
T T F F F
T F T T T
T F F F F
F T T T T
F T F F F
F F T F F
F F F F F

As the two propositions have identical truth tables, they are logically equivalent.

Exercise 2.6. Use truth tables to show that:

(a) ∼(p ∧ q) is logically equivalent to ∼p ∨ ∼q.

(b) ∼(p ∨ q) is logically equivalent to ∼p ∧ ∼q

These equivalences are called De Morgan’s Laws in honor of Augustus De Morgan.5

5For more information on De Morgan’s life and work, see, e.g., [1, 7].
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Exercise 2.7.

(a) Are p→ q and ∼q → ∼p logically equivalent? Justify your answer.

(b) Are p→ q and q → p logically equivalent? Justify your answer.

(c) Are p→ q and ∼p→ ∼q logically equivalent? Justify your answer.

(d) The proposition ∼q → ∼p is often called the contrapositive of the conditional p → q, the
proposition q → p is often called the converse of the conditional p → q, and the propo-
sition ∼p → ∼q is often called the inverse of the conditional p → q. Are there any logical
equivalences between a conditional statement, its contrapositive, its converse, and its inverse?
Justify your answer.

Now that we have introduced the notion of logical equivalence, we will discuss Russell and
Whitehead’s claim that the four logical connectives are “not all independent; and if two of them
are taken as primitive undefined ideas, the other two can be defined in terms of them” [13, Vol. 1,
p. 6]. For example, both → and ∧ can be expressed by means of ∼ and ∨; namely, p → q is a
shorthand for ∼p ∨ q and p ∧ q is a shorthand for ∼(∼p ∨ ∼q).

Exercise 2.8.

(a) Show that p ∨ q and p→ q are logically equivalent to propositions only involving ∼ and ∧.

(b) Show that p ∨ q and p ∧ q are logically equivalent to propositions only involving ∼ and →.

(c) What do these results indicate about the logical connectives introduced in Principia? Are
some connectives redundant? If so, which ones?

Tautologies and contradictions

We have seen that truth tables are a useful tool for determining if two propositions are logically
equivalent, but it turns out that truth tables have a variety of other uses. In what follows we will
explore two other applications of truth tables. The first of these applications is the identification
of certain special propositions. To illustrate what these propositions are and how truth tables can
be used to identify them, we consider the truth table of the proposition p ∨ ∼p:

p p ∨ ∼p
T T
F T

Notice that the truth-values displayed in the righthand column are always truth; falsehood does
not appear. Thus, p ∨ ∼p is true under any assignment of truth or falsehood to the proposition
p. Propositions with this property—that is, propositions which are true for any assignment of
truth-values to the propositional variables of which they are formed—are called tautologies. From
the truth table above, we can easily see that p ∨ ∼p is a tautology. The proposition p ∨ ∼p is
referred to as the law of the excluded middle since it asserts that either p is true or the negation of
p is true (so there is no “middle ground” between truth and falsity). In general, one may test to
see if a proposition is a tautology by constructing its truth table: if the only possible truth-value
of the proposition is truth, then the proposition is a tautology.

Tautologies are special propositions that can be identified by the use of truth tables. Another
sort of special propositions that can be identified in the same way are contradictions. Whereas
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tautologies are propositions which are true under any assignment of truth-values to the proposi-
tional variables of which they are formed, contradictions are propositions that are false under any
assignment of truth-values to the propositional variables of which they are formed. For example,
the proposition p ∧ ∼p is a contradiction. This is illustrated in the following truth table:

p p ∧ ∼p
T F
F F

As the only truth-value displayed in the righthand column is falsehood, the proposition p ∧ ∼p is
a contradiction.

Exercise 2.9. For each of the following propositions, use a truth table to determine whether the
proposition is a tautology, a contradiction, or neither.

(a) ∼(p ∧ ∼p)

(b) p↔ ∼(∼p)

(c) p↔ ∼p

(d) p ∨ (q → p)

(e) (p ∨ q)→ (q ∨ p)

(f) (p→ q)↔ (∼q → ∼p)

(g) (p ∧ q) ∧ (∼p ∨ ∼q)

(h) p→ (q → p)

The logical laws expressed in (a) and (b) are called the law of non-contradiction and the law
of double negation, respectively. For any proposition p, the law of non-contradiction asserts that p
and ∼p are not both true. We also saw that the law of the excluded middle asserts that at least
one of p and ∼p is true. Hence, when taken together, the law of non-contradiction and the law of
the excluded middle guarantee that exactly one of p and ∼p is true for each proposition p.

Now, as promised when we defined logical equivalence, we are ready to see that two propositions
p and q are logically equivalent if and only if the biconditional p↔ q is a tautology.

Exercise 2.10. Show that p and q are logically equivalent if and only if p↔ q is a tautology.

It is often helpful to be able to recognize commonly occurring logical equivalences at a glance.
For convenience, we summarize some of the most frequently appearing logical equivalences in the
table below, where p and q denote arbitrary propositions, t denotes an arbitrary tautology, and c
denotes an arbitrary contradiction. Following contemporary usage, we write p ≡ q when p and q
are logically equivalent. This should not be confused with the biconditional p↔ q.
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Commutative laws: p ∨ q ≡ q ∨ p p ∧ q ≡ q ∧ p
Associative laws: (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
Distributive laws: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Idempotent laws: p ∨ p ≡ p p ∧ p ≡ p
Absorption laws: p ∧ (p ∨ q) ≡ p p ∨ (p ∧ q) ≡ p
Identity laws: p ∨ c ≡ p p ∧ t ≡ p
Universal bound laws: p ∨ t ≡ t p ∧ c ≡ c
De Morgan laws: ∼(p ∨ q) ≡ ∼p ∧ ∼q ∼(p ∧ q) ≡ ∼p ∨ ∼q
Negation laws: p ∨ ∼p ≡ t p ∧ ∼p ≡ c
Negations of t and c: ∼t ≡ c ∼c ≡ t
Double negation law: ∼∼p ≡ p
Other equivalences: p→ q ≡ ∼p ∨ q ∼(p→ q) ≡ p ∧ ∼q

p→ q ≡ ∼q → ∼p p↔ q ≡ (p→ q) ∧ (q → p)

Exercise 2.11. Use the equivalences listed in the table above to write each of the following propo-
sitions as a simpler, logically equivalent proposition.

(a) p ∧ (p ∨ (q ∨ p))

(b) p ∨ ∼(p ∨ ∼p)

(c) ∼(∼(p ∨ ∼q) ∧ r)

(d) (p ∧ ∼p)→ (p ∨ (q ∨ p))

Exercise 2.12. Use the equivalences listed in the table above to determine which of the following
logical equivalences hold. Justify your answers, but do not use a truth table.

(a) (p ∨ (q ∨ r)) ∧ ∼(p ∨ (q ∨ r)) ≡ q ∧ ∼q

(b) (p ∧ r) ∨ ((∼p→ ∼q)→ (q → p)) ≡ p ∧ r

(c) ∼(p→ q)↔ (p ∧ ∼q) ≡ p→ (q → p)

Inference rules

Up until now we have been concerned exclusively with propositions and their properties. However,
the central concern of logic is not just the study of propositions. Rather the object of study in
logic is inference—the process of drawing correct conclusions from premises. Our study of inference
begins with a simple rule which allows us to deduce the proposition q from the propositions p and
p → q. This rule is referred to as Modus Ponens. Principia Mathematica describes the rule as
follows:

∞∞∞∞∞∞∞∞

Inference. The process of inference is as follows: a proposition “p” is asserted, and a proposition “p
implies q” is asserted, and then as a sequel the proposition “q” is asserted. The trust in inference is the
belief that if the two former assertions are not in error, the final assertion is not in error. [13, Vol. 1,
p. 9]

∞∞∞∞∞∞∞∞
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Russell and Whitehead claim that Modus Ponens is a valid logical rule; that is, if the premises
p and p → q are both true, then the conclusion q is guaranteed to be true. While this fact is
intuitively obvious, a skeptical reader may wonder how we really know this is the case. Fortunately,
the skeptic’s concerns may easily be allayed: we can verify that Modus Ponens is valid. For this
we need to be able to guarantee the truth of q based on the truth of the propositions p and p→ q.
We thus need only to verify that q is true in every circumstance in which both p and p → q are
true. To do so, we construct a truth table listing the possible truth-values of the propositions p, q,
and p→ q:

p q p→ q

T T T
T F F
F T T
F F T

The only row of the truth table in which both p and p → q are true is the first. Since in this
case q is also true, we know that if p and p→ q are both true, then q must be true as well. Thus,
Modus Ponens is a valid logical rule.

So far we have focused exclusively on Modus Ponens, but it is worth noting that we might
just as well have discussed any one of several valid logical rules. There are many valid logical
rules (called rules of inference), and Modus Ponens is distinguished only by being the simplest of
these. In the exercises, we will encounter several other historically important rules of inference and
establish their validity.

Exercise 2.13. Use truth tables to verify the validity of the following rule of inference: if ∼q and
p→ q, then infer that ∼p. (This rule of inference is referred to as Modus Tollens.)

Exercise 2.14. Use truth tables to verify the validity of the following rule of inference: if ∼p and
p ∨ q, then infer that q. (This rule of inference is referred to as the disjunctive syllogism.)

Exercise 2.15. Use truth tables to verify the validity of the following rule of inference: if p → q
and q → r, then infer that p→ r. (This rule of inference is referred to as the hypothetical syllogism.)

Exercise 2.16. Consider the following rule of inference: if p → q and q, then infer that p. An
application of this rule of inference is referred to as affirming the consequent. Is affirming the
consequent a valid rule of inference? If so, use truth tables to establish its validity. If not, give
examples of propositions p and q for which p→ q and q are true and p is not.

Exercise 2.17. Late Saturday night the police are called to Crickwell Manor. That evening
Mr. and Mrs. Crickwell had been holding a dinner party, and at the party Mr. Crickwell had been
murdered. Other than the deceased, there had been four people in attendance: Ms. Anderson,
Mr. Boalt, Mrs. Crickwell, and Mr. Dunham. The police interview each of these witnesses, and
they offer the following statements:

(a) Ms. Anderson says that the murderer must be Mr. Boalt or Mr. Dunham.

(b) Mr. Boalt says that neither Mr. Dunham nor Mrs. Crickwell could have killed Mr. Crickwell.

(c) Mrs. Crickwell says that she certainly did not kill her husband, and that if Mr. Boalt were
not the murderer then it must have been Ms. Anderson.

(d) Mr. Dunham says that he himself had far more motive to kill Mr. Crickwell than did Mr. Boalt,
so if he did not kill Mr. Crickwell then neither did Mr. Boalt.

Assuming that only one of the people attending the party killed Mr. Crickwell and that everyone
except the murderer was truthful with the police, who killed Mr. Crickwell?
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3 Predicate Logic

While the propositional logic developed in the previous section allows us to address a number of
significant issues in logic, it turns out that it is not capable of answering all of the logical questions
which are important to mathematicians. For example, recall that a positive integer a is a prime
number if a 6= 1 and the only divisors of a are 1 and a. A mathematician may be interested whether
the proposition “every prime number greater than 2 is odd” is true. Propositional logic is not very
helpful in this regard because it is not possible to view this proposition as being composed from
several elementary propositions by logical connectives. Thus, from the perspective of propositional
logic it must itself be an elementary proposition. However, if “every prime number greater than 2 is
odd” is an elementary proposition, then propositional logic does not provide us with any information
about when this proposition is true—the propositional logic developed in the previous section says
only that elementary propositions are either true or false. In order to provide a more informative
analysis of the proposition “every prime number greater than 2 is odd,” we must introduce ideas
which allow us to discuss the internal structure of propositions that we previously regarded as
elementary.

Individual variables and predicates

We start by introducing new kind of variables, called individual variables to distinguish them from
the propositional variables of the previous section. Individual variables range over objects in some
domain we are presently concerned with rather than over propositions. For example, the domain for
the proposition “every prime number greater than 2 is odd” should range over all positive integers.
We will use the letters x, y, z and so forth to denote individual variables.

With the notion of an individual variable at hand, we can now give an account of how “every
prime number greater than 2 is odd” may be analyzed in terms of simpler propositions. Suppose
that x is an individual variable, and that we take the expression P (x) to mean that “x is a prime
number greater than 2” and the expression O(x) to mean that “x is odd.” Then it is clear that
the proposition “for every x, P (x)→ O(x)” has the same meaning as “every prime number greater
than 2 is odd.” Here the domain the individual variable x ranges over is all positive integers. Thus,
if we can formalize the meanings of P (x), O(x), and “for every x,” then we can give an informative
analysis of the proposition “every prime number greater than 2 is odd.”

We will first formalize the meanings of the expressions P (x) and O(x). These expressions are
examples of what Russell and Whitehead referred to as “propositional functions,” which Principia
Mathematica describes as follows:

∞∞∞∞∞∞∞∞

Propositional Functions. Let φx be a statement containing a variable x and such that it becomes a
proposition when x is given any fixed determined meaning. Then φx is called a “propositional function”;
it is not a proposition, since owing to the ambiguity of x it really makes no assertion at all. Thus “x
is hurt” really makes no assertion at all, till we have settled who x is. Yet owing to the individuality
retained by the ambiguous variable x, it is an ambiguous example from the collection of propositions
arrived at by giving all possible determinations to x in “x is hurt” which yield a proposition, true or false.
Also if “x is hurt” and “y is hurt” occur in the same context, where y is another variable, then according
to the determinations given to x and y, they can be settled to be (possibly) the same propositions or
(possibly) different propositions. But apart from some determination given to x and y, they retain in
that context their ambiguous differentiation. Thus “x is hurt” is an ambiguous “value” of a propositio-
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nal function. [13, Vol. 1, p. 15]

∞∞∞∞∞∞∞∞

Today it is more common to denote the expression φx by φ(x). As the statements “x is a prime
number greater than 2” and “x is odd” become propositions when x is assigned a particular integer
value, P (x) and O(x) as described above are propositional functions. Today the propositional
functions of Russell and Whitehead are referred to as predicates.

Let φ(x) be a predicate and D be some specified domain. Then the collection of objects a in D
for which φ(a) is true is called the truth set of the predicate φ(x) with respect to the domain D. In
other words, the truth set of φ(x) with respect to the domain D is the collection of those objects
in D that make the predicate true.

We denote by N the collection of nonnegative integers

0, 1, 2, . . .

As usual, we will refer to them as natural numbers. We also denote the collection of integers

...,−2,−1, 0, 1, 2, ...

by Z, the collection of rational numbers (ratios of two integers, where the denominator is nonzero)
by Q, and the collection of real numbers by R. The sets N, Z, Q, and R are among the most
common domains of the predicates employed in mathematics. For example, it is most natural to
consider the predicates P (x) and O(x) discussed above as having the domain N. On the other hand,
if one were considering the predicate Q(x) defined by “x is greater than π,” then one is most likely
thinking of R as the domain of Q(x). However, note that if instead we consider Z to be the domain
of Q(x), then we have specified a much different predicate than if we consider the domain to be
R. For example, if we consider R to be the domain of Q(x), then propositions such as Q(π + 1)
and Q(4π) are true (because π + 1 and 4π are both real numbers greater than π). However, if the
domain of Q(x) is Z, then Q(π + 1) and Q(4π) do not even make sense because π + 1 and 4π are
not integers. From this it is clear that in order to completely specify a predicate we must specify
its domain. The domains for the predicates we will discuss will usually be clear from the context.

Exercise 3.1. As above, let P (x) be the predicate “x is a prime number greater than 2” and
O(x) be the predicate “x is odd.” State each of the following propositions verbally in words. Also
determine whether each proposition is true or false.

(a) P (4) ∨O(7)

(b) (P (3) ∧ P (13)) ∧O(12)

(c) P (2)→ P (23)

Exercise 3.2. Identify the truth sets of the following predicates.

(a) A(x) defined by “x is a real number satisfying the equation x2 − 5x+ 6 = 0.”

(b) B(x) defined by “x is a rational number satisfying the inequality x2 ≤ 1.”

Exercise 3.3. For each of the following sets, give an example of a predicate with the specified
domain.

(a) Z
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(b) The set of all letters in the English alphabet.

(c) The set of all continuous functions defined on the real numbers.

(d) The set of all college students in the United States.

Universal and existential quantifiers

Now that we have introduced predicates, we are almost able to analyze the proposition “every
prime number greater than 2 is odd.” Recall that if we let P (x) be the predicate “x is a prime
number greater than 2” and O(x) be the predicate “x is odd,” then the proposition “every prime
number greater than 2 is odd” can be expressed as “for every x, P (x) → O(x).” In order to fully
understand the latter proposition, we only need to clarify what it means for P (x)→ Q(x) to hold
“for every x.” To do so, we will introduce the notion of a quantifier, a logical operator that specifies
whether a predicate φ(x) holds for all values of x or for some value of x. In Principia Mathematica,
a predicate quantified in the former way is written as (x).φ(x) and a predicate quantified in the
latter way is written as (∃x).φ(x):

∞∞∞∞∞∞∞∞

Thus corresponding to any propositional function...there is a range, or collection, of values, consisting
of all the propositions (true or false) which can be obtained by giving every possible determination to x
in φx...in respect to the truth or falsehood of propositions of this range three important cases must be
noted and symbolised. These cases are given by three propositions of which one at least must be true.
Either (1) all propositions of the range are true, or (2) some propositions of the range are true, or (3)
no proposition of the range is true. The statement (1) is symbolised by “(x).φx,” and (2) is symbolised
by “(∃x).φx.” No definition is given of these two symbols, which accordingly embody two new primitive
ideas in our system. The symbol “(x).φx” may be read “φx always,” or “φx is always true,” or “φx is
true for all possible values of x.” The symbol “(∃x).φx” may be read “there exists an x for which φx
is true”...and thus conforms to the natural form of the expression of thought. [13, Vol. 1, pp. 15–16]

∞∞∞∞∞∞∞∞

In the rest of the project we will follow the common practice of denoting (x).φx by (∀x)φ(x)
and (∃x).φx by (∃x)φ(x). With quantifiers, we may now see that “every prime number greater than
2 is odd” may be represented symbolically as “(∀x)(P (x) → O(x)),” where P (x) is the predicate
“x is a prime number greater than 2” and O(x) is the predicate “x is odd.”

When we refer to propositions of the form (∀x)φ(x) and (∃x)φ(x), we will always have in mind
some fixed domain of values over which x may vary. This domain is sometimes called a domain of
discourse. Then (∀x)φ(x) means that φ(x) holds for each value of the individual x in our domain
of discourse D. In other words, (∀x)φ(x) asserts that, for each a in D, the proposition φ(a) holds.
Thus, the proposition (∀x)φ(x) is true if, for each a in D, the proposition φ(a) is true. On the other
hand, (∀x)φ(x) is false if this condition fails to hold; that is, if for some a in D, the proposition
φ(a) is false.

Similarly, (∃x)φ(x) means that there exists a value of x in our domain of discourse D for which
φ(x) holds. Thus, (∃x)φ(x) asserts that there is some a in D such that φ(a) holds. From this it is
clear that (∃x)φ(x) is true if there is at least one a in D such that φ(a) holds, and that (∃x)φ(x)
is false if φ(a) happens to be false for every a in D.

This indicates that there is a close connection between (∀x) and (∃x). We will discuss this in
greater detail later in the project.
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The symbol (∀x) is referred to as a universal quantifier since (∀x)φ(x) asserts that φ(x) holds
universally, i.e., for all values of x, and the symbol (∃x) is referred to as an existential quantifier
since (∃x)φ(x) asserts that there exists a value of x for which φ(x) holds.

Exercise 3.4. Let E(x) be the predicate “x is an even natural number” and O(x) be the pred-
icate “x is an odd natural number.” Express each of the following statements symbolically using
quantifiers and the predicates E(x) and O(x).

(a) There is at least one even natural number.

(b) Every natural number is either even or odd.

(c) Some natural number is both even and odd.

(d) No natural number is both even and odd.

(e) Every natural number that is not even is odd.

(f) The square of every even natural number is even.

Which of the above statements are true and which are false? Explain why.

Exercise 3.5. Let R(x) denote the predicate “x is a real number,” Z(x) denote the predicate “x
is an integer,” O(x) denote the predicate “x is an odd integer,” and P (x) denote the predicate “x
is a prime number.” Translate each of the following statements into English.

(a) (∀x)(Z(x)→ R(x))

(b) (∀x)(P (x)→ O(x))

(c) (∃x)(P (x) ∧R(x))

Which of the above statements are true and which are false? Explain why.

Exercise 3.6. For each of the following statements, define appropriate predicates and write the
statement using predicates and quantifiers.

(a) Every square is a rectangle.

(b) Every real number is either positive, negative, or equal to zero.

(c) Every animal that has a heart has kidneys, and every animal that has kidneys has a heart.

(d) Some natural number is not a prime number.

Unary and binary predicates

Our logical analysis of the proposition “every prime number greater than 2 is odd” relied on our
ability to attribute certain properties to an individual variable x, and the introduction of predicates
was what allowed us to accomplish this. Predicates are very versatile: they can provide symbolic
representations for a multitude of interesting properties. For example, such properties as “being
a rectangle,” “being a prime number,” “being greater than 2” are represented by the predicates
“x is a rectangle,” “x is a prime number,” and “x is greater than 2,” respectively. However, not
every property that is of mathematical interest can be readily expressed using such predicates. For
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example, one may wish to express the fact that there exists a natural number n such that n ≤ m
holds for all natural numbers m (i.e., the fact that the natural numbers have a least member).

The most obvious way to formalize this statement is to introduce a symbol P (x, y) that expresses
“x and y are natural numbers such that x ≤ y.” We may then express the existence of a least
natural number by the proposition “(∃x)(∀y)P (x, y).” In this expression, the role of the symbol
P (x, y) is similar to the role that predicates played in our previous discussion. Indeed, P (x, y) is a
sort of predicate, but, unlike the predicates previously discussed, P (x, y) accepts two variables as
arguments rather than one. Such a predicate is referred to as a binary predicate. Those predicates
that attribute a property to only a single variable (such as those discussed previously) are referred
to as unary predicates.

Exercise 3.7. Let N(x) denote the unary predicate “x is a natural number,” Z(x) denote the
unary predicate “x is an integer,” and P (x, y) denote the binary predicate “x ≤ y.” Represent each
of the following propositions symbolically.

(a) There is a least natural number.

(b) There is a greatest natural number.

(c) There is a least integer.

(d) There is no greatest integer.

Which of the above propositions are true? Explain why.

Exercise 3.8. Let I(x, y) denote the binary predicate “the point x lies on the line y” (if a point x
lies on a line y then x is said to be incident to y). Write each of the following propositions verbally
in words.

(a) (∀x)(∀y)(∃z)(I(x, z) ∧ I(y, z))

(b) (∀x)(∃y)(I(y, x))

What is the mathematical meaning of these two statements? Are they true or false? Explain why.

Exercise 3.9. Allowing the variables x and y to range over the domain of all lines in the Cartesian
plane, let P (x, y) denote the binary predicate “x is parallel to y.” Write each of the following
propositions verbally in words.

(a) (∀x)(P (x, x))

(b) (∀x)(∀y)(P (x, y)→ P (y, x))

(c) (∀x)(∀y)(∀z)((P (x, y) ∧ P (y, z))→ P (x, z))

When the three propositions above hold for a binary predicate P (x, y), then the relationship defined
between x and y by the predicate P (x, y) is said to be an equivalence relation. Is “x is parallel to
y” an equivalence relation?

Exercise 3.10. Recall that a natural number x is a multiple of a natural number y if there exists
a natural number n such that x = ny. Allowing the variables x and y to range over the domain
of all natural numbers, let P (x, y) denote the binary predicate “y is a multiple of x.” Is P (x, y) an
equivalence relation? Justify your answer.
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Exercise 3.11. For natural numbers x and y, define x mod y to be the remainder obtained upon
dividing x by y. Allowing the variables x and y to range over the domain of natural numbers, let
P (x, y) denote the binary predicate “x mod 2 = y mod 2” and let Q(x, y) denote the binary predicate
“x mod 3 = y mod 3.”

(a) Is P (x, y) an equivalence relation? Justify your answer.

(b) Is Q(x, y) an equivalence relation? Justify your answer.

(c) Fix a natural number n.

1. If P (n, 2) holds, what must be true of n?

2. What about if P (n, 1) holds?

3. For a fixed natural number n, must at least one of P (n, 2) or P (n, 1) hold?

4. Can both P (n, 2) and P (n, 1) hold for a single natural number n?

(d) 1. List the natural numbers n for which Q(n, 1) holds, list the natural numbers n for which
Q(n, 2) holds, and list the natural numbers n for which Q(n, 3) holds.

2. Do the three lists have any natural numbers in common? Does every natural number
appear in at least one of the three lists?

3. For each of the lists, the collection of numbers appearing in that list is said to be an
equivalence class of the equivalence relation Q(x, y). What are the equivalence classes
of the equivalence relation P (x, y)?

Logical equivalence of quantified statements

Precisely characterizing when two quantified statements are logically equivalent turns out to be
rather technical, and a thorough treatment of that topic is beyond the scope of this project. Nev-
ertheless, from the comments above one can see that the proposition (∀x)φ(x) is true exactly when
there is no value of x in our domain of discourse for which φ(x) is false. That is, (∀x)φ(x) is true
exactly when ∼(∃x)∼φ(x) is true. One may likewise note that (∃x)φ(x) is true exactly when φ(x)
fails to be false for all x. In other words, (∃x)φ(x) is true exactly when ∼(∀x)∼φ(x) is true. As one
may expect from this discussion, it so happens that (∀x)φ(x) is logically equivalent to ∼(∃x)∼φ(x)
and that (∃x)φ(x) is logically equivalent to ∼(∀x)∼φ(x).

Exercise 3.12. Explain in your own words why

(∀x)φ(x) ≡ ∼(∃x)∼φ(x)

and
(∃x)φ(x) ≡ ∼(∀x)∼φ(x).

One may derive many useful facts about the logical equivalence of quantified statements from
these two laws.

Exercise 3.13. Use the laws (∀x)φ(x) ≡ ∼(∃x)∼φ(x) and (∃x)φ(x) ≡ ∼(∀x)∼φ(x) to rewrite each
of the following statements. Make sure that in your solution all quantifiers precede any instances
of negation.

(a) ∼(∃x)(∀y)(x < y)

(b) ∼(∀x)(∃y)(x < y)
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Which of the above two statements is true? Explain why.

Exercise 3.14. Allowing x and y to range over the domain N, let E(x) denote the unary predicate
“x is even,” O(x) denote the unary predicate “x is odd,” and L(x, y) denote the binary predicate
“x < y.”

(a) Express the proposition “Every odd natural number is less than some even natural number”
using quantifiers and the predicates E(x), O(x), and L(x, y).

(b) Use the laws (∀x)φ(x) ≡ ∼(∃x)∼φ(x) and (∃x)φ(x) ≡ ∼(∀x)∼φ(x) to find the negation of
the proposition obtained in (a). Make sure that in your solution all quantifiers precede any
instances of negation.

(c) Which of the two propositions is true, the one obtained in (a) or its negation? Justify your
answer.

The laws (∀x)φ(x) ≡ ∼(∃x)∼φ(x) and (∃x)φ(x) ≡ ∼(∀x)∼φ(x) are of central importance in
studying the logical equivalence of quantified statements, but a number of other simple equivalences
are also of tremendous importance. For example, it is readily seen that if P (x, y) is a binary
predicate, then (∀x)(∀y)P (x, y) is logically equivalent to (∀y)(∀x)P (x, y) and that (∃x)(∃y)P (x, y)
is logically equivalent to (∃y)(∃x)P (x, y). We describe these simple equivalences by saying that
universal quantifiers (respectively, existential quantifiers) commute with one another.

A far more interesting question is whether universal and existential quantifiers commute with
each other, i.e., whether statements of the forms (∀x)(∃y)P (x, y) and (∃y)(∀x)P (x, y) are in general
logically equivalent. The next three exercises explore this question.

Exercise 3.15. Allowing the variables x and y to range over the domain of all people, let L(x, y)
denote the binary predicate “x likes y.”

(a) Translate the two statements (∀x)(∃y)L(x, y) and (∃y)(∀x)L(x, y) into English.

(b) In your opinion which of the above two statements is true and which is false?

(c) Do the above two statements have the same meaning?

(d) Are the two statements (∀x)(∃y)L(x, y) and (∃y)(∀x)L(x, y) logically equivalent? Justify your
answer.

(e) What can you conclude about the relationship between universal quantifiers and existential
quantifiers from the above example?

Exercise 3.16. Allowing the variables x and y to range over the domain R, let E(x, y) denote the
binary predicate “x = y.” Write each of the following statements verbally in words.

(a) (∀x)(∃y)E(x, y)

(b) (∃x)(∀y)E(x, y)

Which of the above propositions are true? Are the propositions (∀x)(∃y)E(x, y) and (∃x)(∀y)E(x, y)
logically equivalent?

Exercise 3.17. Give your own example of a binary predicate P (x, y) such that (∀x)(∃y)P (x, y)
and (∃x)(∀y)P (x, y) are not logically equivalent. Justify your example.
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We conclude our discussion of the logical equivalence of quantified statements by discussing
several equivalences that hold between quantified conditional statements. We have seen that in
propositional logic a conditional statement p→ q is logically equivalent to its contrapositive ∼q →
∼p, and that the converse q → p of this conditional is equivalent to its inverse ∼p→ ∼q. It turns
out that similar equivalence laws hold for quantified statements.

Let φ(x) and ψ(x) be predicates. We call propositions of the form (∀x)(φ(x) → ψ(x)) univer-
sal conditional statements. If (∀x)(φ(x) → ψ(x)) is a universal conditional statement, we define
its contrapositive to be the statement (∀x)(∼ψ(x) → ∼φ(x)), its converse to be the statement
(∀x)(ψ(x)→ φ(x)), and its inverse to be the statement (∀x)(∼φ(x)→ ∼ψ(x)). Just as the condi-
tional studied in propositional logic is logically equivalent to the contrapositive, so too is the univer-
sal conditional (∀x)(φ(x)→ ψ(x)) logically equivalent to its contrapositive (∀x)(∼ψ(x)→ ∼φ(x)).
Similarly, the converse (∀x)(ψ(x) → φ(x)) is logically equivalent to the inverse (∀x)(∼φ(x) →
∼ψ(x)).

Exercise 3.18. Let φ(x) and ψ(x) be unary predicates, and let χ(x, y) be a binary predicate.
Determine which of the following logical equivalences hold. Justify your answers.

(a) (∃x)(φ(x) ∧ ψ(x)) ≡ (∃x)φ(x) ∧ (∃x)ψ(x)

(b) (∀x)(φ(x)→ (∃y)χ(x, y)) ≡ ∼(∃x)(φ(x) ∧ (∀y)∼χ(x, y))

(c) (∃x)(∃y)χ(x, y)→ (∃y)(∃x)χ(x, y) ≡ (∀y)(∀x)χ(x, y)→ (∀x)(∀y)χ(x, y)

Inference rules in predicate logic

Our development of individual variables, predicates, and quantifiers has provided us with a language
for discussing propositions that is much more expressive than the propositional language discussed
in the previous section. In particular, predicate logic is capable of addressing questions about
complex propositions such as “every prime number greater than 2 is odd” that the propositional
logic of the previous section cannot. However, we have not yet discussed the issue of logical inference
in predicate logic. This is the topic to which we now turn.

Recall that if p and q are propositions, then one can deduce the proposition q from the propo-
sitions p and p → q. We called this rule of inference Modus Ponens, and in the previous section
we proved that Modus Ponens is a valid rule of inference (i.e., if p and p → q are true, then the
deduced proposition q must also be true). As it turns out, there is an analogous rule of inference
for predicate logic.

Suppose that we fix some domain D over which our individual variables may range, that a is
some element in D, and that P (x) and Q(x) are predicates. Then if both (∀x)(P (x)→ Q(x)) and
P (a) hold, we may deduce that Q(a) holds as well. This gives a valid rule of inference, which we
call Universal Modus Ponens.

A mathematically rigorous verification of the validity of Universal Modus Ponens requires an
analogue of truth tables for predicate logic, and is beyond the scope of this project. However, we
can give an informal argument for the validity of Universal Modus Ponens as follows.

Suppose that both (∀x)(P (x) → Q(x)) and P (a) hold; we must show that Q(a) holds as well.
Since (∀x)(P (x) → Q(x)) holds, we have from the definition of the universal quantifier that the
proposition P (b)→ Q(b) holds for each member b of our specified domain D. In particular, as a is
an element of D, we have that P (a) → Q(a) holds. Now notice that both P (a) → Q(a) and P (a)
are propositions. Since Modus Ponens is a valid rule of inference of propositional logic, we have
that as P (a)→ Q(a) and P (a) hold, it follows that Q(a) holds as well, completing our argument.
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Exercise 3.19. Fix some domain D over which we allow individual variables to range, suppose a
is an element of D, and further suppose that P (x) and Q(x) are predicates. Provide an informal
verification that the following rule of inference is valid: If both (∀x)(P (x) → Q(x)) and ∼Q(a),
infer that ∼P (a). (This rule is referred to as Universal Modus Tollens.)

Exercise 3.20. Fix some domain D over which we allow individual variables to range, suppose a
is an element of D, and further suppose that P (x) and Q(x) are predicates. Consider the following
rule of inference: if both (∀x)(P (x) → Q(x)) and Q(a), then infer P (a). Provide an informal
argument for whether this is a valid rule of inference.

Exercise 3.21. A certain city is governed by a council consisting of five voting members: Fay,
Gould, Haber, Ishikawa, and Jacobs. The council frequently votes on issues pertaining to city
government, and several facts about the voting patterns of the council members are known:

(a) On every proposal, if Fey votes in favor of the proposal then so does Gould.

(b) Ishikawa and Jacobs never both vote in favor of the same proposal.

(c) On every proposal, if Haber does not vote in favor of the proposal then neither does Gould.

Suppose that a new budget for the city is going to come up for a vote before the council, and that
Fay will vote in favor of the budget. Formalize this situation using predicate logic, and deduce
whether the budget will pass. Justify every step in your deduction. (In order for the budget to
pass, at least three voting members of the council must vote in favor of it.)

4 Looking Forward

The logical system we have studied in this project is today known as classical logic. The publication
of Principia Mathematica led to a considerable amount of research in classical logic in the first half
of the 20th century, and the work of such logicians as David Hilbert (1862–1943), Alfred Tarski
(1901–1983), and Kurt Gödel (1906–1978) during this period led to a thorough understanding of
classical logic. However, original research in logic continues today. Contemporary research in logic
focuses on a variety of so-called non-classical logics, each of which is in some way a modification
or expansion of classical logic. The classical logic developed in this project hence forms the core
of contemporary research, and thus remains of relevance almost a century after the publication of
Principia Mathematica.
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Notes to the instructor

This project is a self-contained treatment of the topics from propositional and predicate logic
typically covered in a first course in discrete mathematics. It may be used as a text for the logic
unit of a standard one semester course at the freshman or sophomore level, and should require
approximately three/four weeks of class time to complete. Very few prerequisites are assumed.
Students with a year course in calculus are more than prepared for the material contained here,
and for the majority of exercises no more background than college algebra is required.

The exercises form a particularly important part of the project, and were designed to simulta-
neously provide students with practice applying the ideas discussed and to extend the discussion to
new material. Several exercises introduce concepts from logic, number theory, the theory of rela-
tions, and other topics that are not normally covered until later in a discrete mathematics course.
All such exercises are elementary, and may be taken as a stand-alone opportunity to study the
primary material, or as an invitation to explore more advanced concepts. Because it is customary
to cover logic at the beginning of a discrete mathematics course, the instructor may wish to begin
with the material here, and use these exercises as a way of connecting logic to the material covered
later in the course.

Several exercises (e.g., Exercise 2.8(c), the last question of Exercise 3.8, and Exercise 3.15(e))
are slightly open-ended. In our opinion, this stimulates independent thinking, as well as provides
an opportunity for further in-class discussion. In our experience, such discussions enhance students’
understanding of the material.

Developing the logical skills necessary to read and write mathematical proofs is emphasized
throughout. The instructor may wish to discuss the material covered here and proceed to introduce
basic proofs using number theory or naive set theory. The instructor may even use exercises that
discuss concepts from number theory or the theory of relations as a jumping off point to assign
outside exercises on reading or writing proofs before the material here is completed. This provides
an extremely quick way of exposing students to proofs.

23


