
Regular Languages and Finite Automata

Hing Leung
Department of Computer Science

New Mexico State University

1. Introduction

In 1943, McCulloch and Pitts [4] published a pioneering work on a model
for studying the behavior of nervous systems. Following on the ideas of
McCulloch and Pitts, Kleene [3] wrote the first paper on finite automata and
regular expressions. A finite automaton can be considered as the simplest
machine model in that the machine has a finite memory; that is, the memory
size is independent of the input length. In a 1959 paper [5], Michael Rabin
and Dana Scott presented a comprehensive study of the theory of finite
automata, for which they received the Turing Award, the highest award in
computer science.

Rabin and Scott present finite automata in the simplest mathematical
model. On the other hand, Kleene’s more complex model of finite automata
allows the user to express ideas easier, even though formally both models
are equivalent in their expressiveness. A similar situation happens with
programming languages. While a lower level assembly-styled language with
simpler syntax is sufficient to program the computer to do whatever a high
level language can do, the programming community embraces higher level
programming languages like Java, C++ and Python for higher productivity.

In this project for students, we study Kleene’s concept of finite automata
and regular expressions [3]. In particular, we learn Kleene’s own proof of the
theorem (which is now called Kleene’s theorem) that shows finite automata
and regular expressions are equivalent in their expressiveness for denoting
languages.

1.1. S. C. Kleene

Stephen Cole Kleene 1 (born on January 5, 1909 in Hartford, Connecticut;
died on January 25, 1994 in Madison, Wisconsin) was an American math-
ematician who helped lay the foundations for theoretical computer science.
He was awarded a Ph.D. in mathematics, under the supervision of Alonzo
Church, from Princeton University in 1934.

1For a detailed biography of Kleene, see http://en.wikipedia.org/wiki/Stephen Cole Kleene and
http://www-history.mcs.st-andrews.ac.uk/Biographies/Kleene.html.

1



Kleene’s research was on the theory of algorithms and recursive function
theory. He developed the field of recursion theory with Church, Gödel,
Turing and others.

By providing methods of determining which problems are solvable,
Kleene’s work led to the study of which functions can be computed. Kleene
developed a diverse array of topics in computability: the arithmetical hier-
archy, degrees of computability, computable ordinals and hyperarithmetic
theory, finite automata and regular sets, computability on higher types, re-
cursive realizability for intuitionistic arithmetic with consequences for philos-
phy and for program correctness in computer science.

2. Kleene’s Finite Automata Model

In [3], Kleene investigates McCulloch-Pitts nerve nets. As explained in the
excerpt below, his study of nerve nets serves as an illustration of the general
theory of finite automata.

∞∞∞∞∞∞∞∞

Finally, we repeat that we are investigating McCulloch-Pitts nerve nets only
partly for their own sake as providing a simplified model of nervous activity,
but also as an illustration of the general theory of automata, including robots,
computing machines and the like. What a finite automaton can and cannot
do is thought to be of some mathematical interest intrinsically, and may also
contribute to better understanding of problems which arise on the practical level.

∞∞∞∞∞∞∞∞

Below is Kleene’s description of the finite automata model:

∞∞∞∞∞∞∞∞

8.1 CELLS. Time shall consist of a succession of discrete moments numbered
by the positive integers, except in Section 10 where all the integers will be used.

We shall consider automata constructed of a finite number of parts called
cells, each being at each moment in one of a finite number of ≥ 2 of states.

We shall distinguish two kinds of cells, input cells and inner cells.
An input cell admits two states, 0 and 1 (or ”quiet” and ”firing”), which

one is assumed at a given moment being determined by the environment.
The restriction to 2 states for input cells makes the notion of input to the

automaton coincide with the notion of an input to a nerve net as formulated in

2



Sections 4 and 6.5. But the present theory would work equally well with more
than 2 states. Nothing would be gained, however, as p cells each admitting 2
states could be used to replace one cell admitting any number q (2 ≤ q ≤ 2p)
of states 0, 1, . . . , q− 1, where if q < 2p we could either consider only inputs in
which states q, . . . , 2p − 1 do not occur or identify those states with the state
q − 1 in all the operations of the automaton.

The number of states of an inner cell is not restricted to 2, and different
inner cells may have different numbers of states.

The state of each inner cell at any time t > 1 is determined by the states
of all the cells at time t− 1. Of course it may happen that we do not need to
know the states of all the cells at time t− 1 to infer the state of a given inner
cell at time t. Our formulation merely leaves it unspecified what kind of a law
of determination we use, except to say that nothing else than the states of the
cells at t− 1 can matter.

For time beginning with 1, the state of each of the inner cells at that time
is to be specified.

8.2 STATE. With k input cells N1, . . . , Nk (k ≥ 0), and m inner cells
M1, . . . ,Mm (m ≥ 1) with respective number of states s1, . . . , sm, there are
exactly 2ks1 · . . . · sm possible (complete) states of the automaton. We can
consider each state as a combination of an external state, of which there are
2k possible, and an internal state, of which there are s1 · . . . · sm possible.

The law by which the states of the inner cells at time t > 1 are determined
by the states of all the cells at time t − 1 can be given by specifying to each
of the complete states at time t− 1 which one of the internal states at time t
shall succeed it.

∞∞∞∞∞∞∞∞

We notice that Kleene’s model is a lot more complex than most of the
versions adopted in the textbooks ([1], [2], [6]). In fact, Kleene was well
aware of the possibility for defining the finite automata model in the simpler
way as in the modern textbooks. He gave the following arguments to defend
his preference:

∞∞∞∞∞∞∞∞

We could indeed consider the entire aggregate of m internal cells as replaced
by a single one admitting s1 · . . . ·sm states. We shall not take advantage of this
possibility, because we have in view applications of the theory of finite automata
in which the cells have certain simple properties and are connected in certain
simple ways.

3



We could also (but shall not) get along with a single input cell, by scheduling
the inputs on the k original input cells to come in successively in some order on
the new one, which would alter the time scale so that k moments of the new
scale correspond to 1 of the original. Events referring to the new time scale
could then be interpreted in terms of the original.

∞∞∞∞∞∞∞∞

With k input cells in the finite automaton, to describe a past history of
the input for t time units, we need a table of t rows by k columns. Thus, an
“input” is described by a table.

Next, Kleene defines “event” as follows:

∞∞∞∞∞∞∞∞

By an event we shall mean any property of the input. In other words, any
subclass of the class of all the possible tables describing the input over all past
time constitutes an event, which occurs when the table describing the actual
input belongs to this subclass.

∞∞∞∞∞∞∞∞

In the terminology of modern textbooks ([1], [2], [6]), an event is called
a “language”. That is, an event (or, language) is a subset of the set of all
possible inputs.

In what way does a finite automaton denote an event? When Kleene
defines the event that a finite automaton denotes, for the sake of convenience,
he makes use of what he calls aggregate states. This should be not confused
with his claim that he “shall not take advantage of this possibility” [of
replacing every aggregate state by a single state] as a finite automaton is
still allowed to have multiple internal cells.

∞∞∞∞∞∞∞∞

Now let us call the states a1, . . . , ar where r = 2k · s1 · . . . · sm and the
internal states b1, . . . , bq where q = s1 · . . . · sm. Let the notation be arranged
so that the internal state at time 1 is b1.

With the internal state at time 1 fixed, the state at time p is a function of
the input over the time 1, . . . , p (including the value of p, or when k = 0 only
this).

4



So each of the states a1, . . . , ar represents an event, which occurs ending
with time p, if and only if the input over the time 1, . . . , p is one which results
in that one of a1, . . . , ar being the state at time p. Thus the automaton can
know about its past experience (inclusive of the present) only that it falls into
one of r mutually exclusive classes (possibly some of them empty).

Similarly an internal state at time p+ 1, or a property of the complete state
at time p, or a property of the internal state at time p+ 1, or a property of the
internal state at time p + s for an s > 1 represents an event. Thus to say that
the state at time p has a certain property is to say that the state then is one of
a certain subclass of the r possible states, so that the past experience falls into
the set sum (or disjunction) of the respective classes of past experiences which
are separately represented by the states of the subclass.

∞∞∞∞∞∞∞∞

Exercise 2.1. Compare Kleene’s finite automata model with the finite
automata model that you find in your textbook. Point out the similarity
and differences between the two. Argue that Kleene’s model is no more
powerful in denoting languages than the textbook’s model.

For Exercises 2.2 and 2.3, we consider the following problem. Suppose we
have to maintain the value of a 16-bit binary number. Initially, the binary
number has the value 0. At every time unit, we are given a new 16-bit
binary number as input, which we add to the 16-bit binary number that we
are maintaining. In adding two 16-bit binary numbers, overflow may occur.
The higher ordered bits that cannot be represented within 16 bits are lost.
For example,

1100100100001l01

+ 0110010011011000

-------------------

0010110111100101

The following is a summary of the logic for adding two 16-bit binary num-
bers:

initialize s = 0000000000000000;

for each time t,

let bt (a 16-bit binary number) be the new input

s = s + bt; // binary addition

5



Exercise 2.2. Give the design of a finite automaton, according to
Kleene’s model, with 16 input cells and 16 inner cells, for the event that
the current value of the 16-bit binary number consists of all 0’s.

Exercise 2.3. Discuss the design of a finite automaton, according to
your textbook’s model, that captures the same event as defined in Exercise
2.2.

For Exercises 2.4 and 2.5, we consider the chess game. Initially, all the
chess pieces are positioned in their rightful places. Each input corresponds to
a move, which can be described as an ordered pair of positions ((x, i), (y, j))
where x, y ∈ {a, b, c, d, e, f, g, h} and i, j ∈ {1, 2, 3, 4, 5, 6, 7, 8}. All the game
rules have to be observed. Once the game is over, no more moves are allowed.

Exercise 2.4. Sketch the design of a finite automaton, according to
Kleene’s model, with 65 inner cells (one for each of the 64 squares on the
chessboard and one cell for remembering whose turn, black or white, it is
for the next move) for the event that the sequence of moves are valid.2

Exercise 2.5. Discuss the design of a finite automaton, according to
your textbook’s model, that captures the same event as defined in Exercise
2.4.

3. Regular Events

The concept of regular events was introduced by Kleene via the definition of
regular expressions. In the terminology of modern textbooks ([1], [2], [6]),
regular events are called regular languages.

The following is Kleene’s definition of regular events:

∞∞∞∞∞∞∞∞

First we define three operations on sets of tables. If E and F are sets of
tables, E ∨ F (their sum or disjunction) shall be the set of tables to which
a table belongs exactly if it belongs to E or belongs to F .

If E and F are sets of tables, EF (their product) shall be the set of tables
to which a table belongs exactly if it is the result of writing any table of F next
below any table of E. [This statement is slightly adapted from the

original source. Also, some lines are omitted.]

Obviously E ∨ F and EF are associative operations. We may write E0F
for F , E1 for E, E2 for EE, E3 for EEE, etc.

2It is not required to give the full design details.

6



If E and F are sets of tables, E∗F (the iterate of E on F , or briefly
E iterate F ) shall be the infinite sum of the sets F , EF , EEF , . . ., or in
self-explanatory symbolism F ∨ EF ∨ EEF ∨ . . . or

∑∞
n=0E

nF .
The regular sets (of tables) shall be the least class of sets of tables

which includes the unit sets (i.e., the sets containing one table each) and the
empty set and which is closed under the operations of passing from E and F
to E ∨ F , to EF and to E∗F .

An event shall be regular, if there is a regular set of tables which describes
it in the sense that the event occurs or not according as the input is described
by one of the tables of the set or by none of them.

∞∞∞∞∞∞∞∞

Kleene defines a related concept of regular expressions as follows3:

∞∞∞∞∞∞∞∞

By a regular expression, we shall mean a particular way of expressing a
regular set of tables starting with single-table sets and applying zero or more
times the three operations (passing from E and F to E ∨ F , EF or E∗F ).

∞∞∞∞∞∞∞∞

Exercise 3.1. Compare Kleene’s definitions of regular events and ex-
pressions to the corresponding definitions of regular sets (equivalently, reg-
ular languages) and regular expressions given in your textbook. The defini-
tions differ slightly. In what way do the definitions differ? Are the differences
significant?

Why are regular expressions and regular events introduced? Kleene ex-
plains the reasons in the following excerpt:

∞∞∞∞∞∞∞∞

Our reason for introducing the regular events, as given by regular sets of
tables described by regular expressions, is Theorem 5, which we discovered
before Theorem 3. By using the notion of regular events, we thus demonstrate
that a McCulloch-Pitts nerve net can represent any event which any other kind
of finite digital automaton (in the sense to be developed in detail in Section

3The excerpt is slightly adapted from the original source without introducing new
terminologies that are present in the original text.

7



8) can represent. This of course includes a number of special results which
McCulloch and Pitts obtained for alternative kinds of nerve nets, but is more
general. The way is open to attempt similarly to verify the like for other kinds
of “cells” in place of neurons, or to seek some characterization of the properties
of the cells in order that aggregates of them have the capacity for representing
all representable (i.e., all regular) events.

∞∞∞∞∞∞∞∞

That is, regular expressions and regular events are introduced so that we
can prove the equivalence with “other finite digital automata” by showing
that the events that they can represent are exactly the regular events.

In Theorem 5, Kleene shows that finite automata denote regular events,
which are defined in terms of regular expressions.

∞∞∞∞∞∞∞∞

What sorts of events can be represented? As the concept of input is the
same as in Part I, we can use the notion of “regular event” which was introduced
in Section 7. The following theorem, together with Theorem 3 referring to a
special kind of finite automaton, answer the question.

Theorem 5. In any finite automaton (in particular, in a McCulloch-Pitts
nerve net), started at time 1 in a given internal state b1, the event represented
by a given state existing at time p is regular.

∞∞∞∞∞∞∞∞

Next, we give Kleene’s proof of Theorem 5.

∞∞∞∞∞∞∞∞

PROOF. Since the initial internal state is specified, there are 2k possible
initial states (the results of combining the given initial internal state b1 with
each of the 2k possible external states at time 1).

So if we can show that the automaton starting from a given state at time 1
will reach a given state at time p, if and only if a certain regular event occurs
ending with time p, then the theorem will follow by taking the disjunction of 2k

respective regular events, which is itself a regular event.
Given any state a at time t − 1 (t ≥ 2), exactly 2k states are possible at

time t, since the internal part of the state at time t is determined by a, and the
external part can happen in 2k ways. Let us say each of these 2k states is in
relation R to a.

8



∞∞∞∞∞∞∞∞

At this point, Kleene decided to give a generalized treatment for the
main proof technique behind the proof of Theorem 5. This is in contrast
with the treatments that we find in modern textbooks ([1], [2], [6]). Besides,
the general treatment is interesting in its own right.

∞∞∞∞∞∞∞∞

The next part of our analysis will apply to any binary relation R defined on
a given set of r ≥ 1 objects a1, . . . , ar (called ”states”), whether or not it arises
in the manner just described.

Consider any two a and ā of the states, not necessarily distinct. We shall
study the strings of states dpdp−1 . . . d1 (p ≥ 1) for which dp is a, d1 is ā, and
for each t (t = 2, . . . , p) dt is in relation R to dt−1 (in symbols, dtRdt−1); say
such strings connect a to ā.

We say a set of strings is ”regular” under the following definition (chosen
analogously to the definition of ”regular” sets of tables in 7.1).

The empty set and for each i (i = 1, . . . , r) the unit set {ai} having as
only member ai considered as a string of length 1 are regular. If A and B are
regular, so is their sum, written A ∨ B. If A and B are regular, so is the set,
written AB, of the strings obtainable by writing a string belonging to A just
left of a string belonging to B. If A and B are regular, so is the sum, written
A∗B, for n = 0, 1, 2, . . . of the sets A . . . AB with n A’s preceding the B.

Lemma 7. The strings dp . . . d1 connecting a to ā constitute a regular set.
PROOF OF LEMMA, by induction on r.
BASIS: r = 1. Then ā is a. If aRa (i.e., if R is an irreflexive relation), the

set of the strings connecting a to a is the unit set {a}, which is regular. If aRa,
then the set is {a, aa, aaa, . . .}, which is regular, since it can be written A∗A
where A = {a}.

INDUCTION STEP: r > 1.
CASE 1: a = ā. In this case any string connecting a to ā is of the form

a→ a→ a→ . . . a→ a,

where the number of a →’s is ≥ 0 and each → represents independently the
empty string (this being possible only if aRa) or a non-empty string without
any a in it. Let e1, . . . , eg (g ≥ 0) be the states e such that aRe but e 6= a, and
f1, . . . , fh (h ≥ 0) the states f such that fRa but f 6= a. Now any non-empty
string represented by an → must start with one of e1, . . . , eg and end with one
of f1, . . . , fh. For each pair eifj , by the hypothesis of the induction the set of

9



the strings connecting ei to fj without a in it is regular. Say B1, . . . , Bgh are
these regular sets; and let A be {a}. Now if aRa, the set of the possible strings
a→ is A ∨A(B1 ∨ . . . ∨Bgh) (which reduces to A if gh = 0 or all the B’s are
empty); and if aRa, it is A(B1 ∨ . . .∨Bgh) (which is empty if gh = 0 or all the
B’s are empty). Let this set be C. Then the set of the strings leading from a
to a is C∗A (which reduces to A if C is empty).

CASE 2: a 6= ā. Now we have instead

a→ a→ a→ . . . a→ a 99K ā

where the number of a→’s is ≥ 0 and each→ and the 99K represents indepen-
dently the empty string or a non-empty string without any a in it. If D is the
set of the possible strings a 99K, and E = {ā}, the set of the strings connecting
a to ā is C∗DE, which is regular.

∞∞∞∞∞∞∞∞

With the proof of Lemma 7 done, Kleene is ready to complete the proof
of Theorem 5.

∞∞∞∞∞∞∞∞

PROOF OF THEOREM (completed). We need to show that, for a given
state a and each of 2k states ā, the state is a at time p and ā at time 1, if and
only if a certain regular event occurs over the time 1, . . . , p.

By the lemma, the set of the strings which can connect a to ā is regular.
Consider an expression for this regular set in terms of the empty set and the sets
{ai} as the units (cf. 7.2). In this expression let us replace each unit {ai} by
the unit set consisting of the k× 1 table which (if k > 0) describes the external
part of the state ai, labeled initial or non-initial according to whether that unit
{ai} was earliest or not. Each empty set as unit we replace by itself (but write
it Ī). There results a regular expression. The state changes from ā at time 1
to a at time p, exactly if the event described by this regular expression occurs
over the time 1, . . . , p.

∞∞∞∞∞∞∞∞

Exercise 3.2. Consider Case 2 of the induction proof for Lemma 7. Is
it justified to claim that C∗DE is regular? Carefully explain your answer.

Exercise 3.3. Compare critically Kleene’s proof that “the events [lan-
guages] denoted by finite automata are regular” with the proof that you find

10



in your textbook. In your opinion, which proof is easier to follow? Which
proof offers a more rigorous correctness argument? Explain your answers.

Exercise 3.4. Kleene shows that any finite automaton, as defined ac-
cording to Kleene’s definition, denotes a regular event. Re-prove the result
for the modern day definition of finite automata by making use of Kleene’s
Lemma 7.

References

[1] J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to au-
tomata theory, languages, and computation, 2nd Edition, Addison-
Wesley, 2001.

[2] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory,
languages, and computation, Addison-Wesley, 1979.

[3] S. C. Kleene, “Representation of events in nerve nets and finite au-
tomata”, in: C. Shannon and J. McCarthy, (eds.) Automata Studies,
Princeton University Press, NJ, 1956, 3–41.

[4] W. S. McCulloch and W. Pitts, “A logical calculus of ideas immanent
in nervous activity”, Bull. Math. BioPhys., 5 (1943), 115–133.

[5] M. O. Rabin and D. Scott, “Finite automata and their decision prob-
lems”, IBM Journal of Research and Development, 3 (1959), 114–125.

[6] M. Sipser, Introduction to the theory of computation, 2nd Edition,
Thomson Course Technology, 2006.

11



Notes to the Instructor

The project can be used in a senior undergraduate or beginning graduate
level course on the theory of computation. Before working on the project,
students are expected to have studied the concepts of finite automata and
regular languages from a modern textbook. Students will learn that Kleene’s
original definition of a finite automaton is more liberal than the textbook’s
definition given by Rabin and Scott [5]. Also presented in the project is
Kleene’s proof of the equivalence between the expressiveness of regular ex-
pressions and finite automata.

The completion of the project requires two weeks. If the students are
strong in mathematical thinking and proofs, an instructor may wish to assign
the project as homework. Otherwise, the instructor can use some class
time to go over materials in the project that the students find challenging.
Students can work on the project individually or in groups of two or three.
Exercises 2.1-2.5 can be completed in one week, while the rest of the exercises
are completed in the second week.

Given that the exercises are open-ended questions, it is advised that an
instructor should carefully work through the project before assigning it to
the students.

Notes on Exercise 2.2:

The usual logic for addition requires the carry bit to be passed sequen-
tially from the lower ordered digits to the higher ordered digits as the ad-
dition process is performed. Recall that, with Kleene’s model, the logic for
determining the i-th bit (an inner cell) at time t is said to be “determined
by the states of all the cells [that include the input cells and inner cells] at
time t − 1”. However, Kleene’s model leaves it wide open how the states
of all the cells at time t − 1 decide the state of an inner cell at time t.
So, the mechanism for determining the state of an inner cell can indeed be
summarized by a sequential procedure (as employed in the addition logic).

Notes on Exercise 3.3:

The textbooks in [1] and [6] use the state elimination method in con-
structing a regular expression from a given finite automaton. The construc-
tion requires the introduction of the concept of generalized nondeterministic
finite automata. In [2] a dynamic programming approach, that resembles
Floyd-Warshall’s algorithm for computing transitive closure of a graph, is

12



used. In contrast, Kleene’s approach seems to be more in line with the usual
mathematical induction technique in that the assertion is proved for a small
number of states, and an induction step is used to prove the claim as the
number of states increases. So, it is quite possible that the students will
find Kleene’s approach more natural assuming that they have had a good
training in proofs by mathematical induction.

13


