
Program Correctness

Hing Leung
Department of Computer Science

New Mexico State University

1 Introduction

We present a project for students on proving the correctness of a program,
studied by reading excerpts from the pioneering paper of Robert W. Floyd on
“Assigning meanings to programs” (In Proceedings Symposium on Applied
Mathematics, 19, Math. Aspects in Computer Science, pages 19–32, 1967).

The topic of program correctness is often covered briefly in textbooks on data
structures and algorithms. For example, program correctness are discussed
in “Data Structures and Algorithms in Java” by M. T. Goodrich and R.
Tamassia, John Wiley and Sons, p. 129-131, 2004, and in “Introduction to
Algorithms” by T. Cormen, C. Leiserson, R. Rivest, and C. Stein, McGraw
Hill, p. 17-19, 2003. However, the discussions tend to be very concise.

Another pioneering paper in program correctness is C. A. R. Hoare’s “An
axiomatic basis for computer programming” (Communications of the ACM,
Vol 12, No. 10, pages 576–580, 1969). In advanced textbooks on the topic
of program correctness, almost all of them are based on Hoare’s axiomatic
logic treatment in which mathematical axioms and inference rules are em-
ployed. As admitted by Hoare in his CACM paper, “The formal treatment
of program execution presented it this paper is clearly derived from Floyd.”
(p. 583), and the treatment “is essentially due to Floyd but is applied to
texts rather than flowchart” (p. 577). That is, conceptually Hoare’s method
is no different than Floyd’s. However, Hoare’s axiomatic approach, which is
presented with the notations and terminology of axioms and inference rules,
may be quite difficult for an upper level computer science undergraduate
student. In practice, Hoare’s technique, while based on axioms and infer-
ence rules, is often carried out by annotating a program with assertions. In
the appendix of this project, we give a brief overview of Hoare’s method. An
excellent account of the history in the development of program correctness
concepts is given in Chapter 2 of “Mechanizing Proof” by Donald MacKenzie
(MIT Press, 2001).

1

In Floyd’s approach, programs are presented as flowcharts. One may wonder
if flowchart programs are realistic, and whether Floyd’s technique applies
to programs that people write nowadays. In this project, we propose to
replace flowchart programs by assembly-like programs with the use of “goto”
statements. Each statement is accompanied by an assertion.

By adopting assembly-like programs as our preferred programming style, we
are able to present the correctness proof technique in a simple and unified
manner without the need to revise the technique for each new programming
language. We assume that a junior level computer science student is able
to convert mechanically a program in a high level language into a assembly-
like program. As the mechanical conversion preserves the same program
execution behavior, we can establish the correctness of the original program
in a high level language by proving the correctness of the derived assembly-
like program.

In fact, a complete program correctness proof consists of two parts: a partial
correctness proof and a termination proof. A partial correctness proof shows
that a program is correct when indeed the program halts. However, a partial
correctness proof does not establish that the program must halt. To prove a
program always halt, the proof is called “termination proof”. In this project,
we focus on the partial correctness proof. That is, we are not going to cover
the “termination proof”.

In contrast, program testing is performed by running a program on a number
of test cases with the intention of revealing the defects in the construction
of the program. However, the fact that no bug is revealed in the testing
cannot be used to establish that the program is correct as the test suite can
never cover all the cases.

Formal proof techniques are not only limited to proving program correctness.
In 1994, when Intel first introduced the Pentium processor, a bug (known as
Pentium FDIV bug) was found with the division operations in the floating
point computation unit. Since then, automated theorem proving techniques
have been employed extensively by Intel and AMD in integrated circuit
design of computer processors.

Not surprisingly, using computers in mechanizing formal proofs also help
mathematicians in obtaining new results, or new proofs to old results. A
special issue of the Notices of the American Mathematical Society in Dece-
meber 2008 is dedicated to this topic.

2

2 Robert W. Floyd

Following1 are excerpts from wikipedia:

Robert W Floyd (June 8, 1936 – September 25, 2001) was an
eminent computer scientist.

His contributions include the design of Floyd’s algorithm, which
efficiently finds all shortest paths in a graph, and work on pars-
ing. In one isolated paper he introduced the important concept of
error diffusion for rendering images, also called Floyd-Steinberg
dithering (though he distinguished dithering from diffusion). A
significant achievement was pioneering the field of program ver-
ification using logical assertions with the 1967 paper Assigning
Meanings to Programs. This was an important contribution to
what later became Hoare logic.

Born in New York, Floyd finished school at age 14. At the Uni-
versity of Chicago, he received a Bachelor’s degree in liberal arts
in 1953 (when still only 17) and a second Bachelor’s degree in
physics in 1958.

Becoming a computer operator in the early 1960s, he began pub-
lishing many noteworthy papers and was appointed an associate
professor at Carnegie Mellon University by the time he was 27
and became a full professor at Stanford University six years later.
He obtained this position without a Ph.D.

He received the Turing Award in 1978 “for having a clear influ-
ence on methodologies for the creation of efficient and reliable
software, and for helping to found the following important sub-
fields of computer science: the theory of parsing, the semantics
of programming languages, automatic program verification, au-
tomatic program synthesis, and analysis of algorithms”.

Floyd worked closely with Donald Knuth, in particular as the
major reviewer for Knuth’s seminal book The Art of Computer
Programming, and is the person most cited in that work. He
was the co-author, with Richard Beigel, of the textbook The
Language of Machines: an Introduction to Computability and
Formal Languages, Freeman Publishing, 1994.

1Taken from http://en.wikipedia.org/wiki/Robert W Floyd on Jan 15, 2013.

3

3 Floyd’s method

First, we’ll read the following excerpts from Floyd’s paper:

∞∞∞∞∞∞∞∞

The basis of our approach is the notion of an interpretation of a program: that
is, an association of a proposition with each connection in the flow of control
through a program, where the proposition is asserted to hold whenever that
connection is taken. To prevent an interpretation from being chosen arbitrar-
ily, a condition is imposed on each command of the program. This condition
guarantees that whenever a command is reached by way of a connection whose
associated proposition is then true, it will be left (if at all) by a connection
whose associated proposition will be true at that time. Then by induction on
the number of commands executed, one sees that if a program is entered by a
connection whose associated proposition is then true, it will be left (if at all)
by a connection whose associated proposition will be true at that time. By this
means, we may prove certain properties of programs, particularly properties of
the form: “If the initial values of the program variables satisfy the relation R1,
the final values on completion will satisfy the relation R2.”

DEFINITIONS. A flowchart will be loosely defined as a directed graph with a
command at each vertex, connected by edges (arrows) representing the possible
passages of control between the commands. An edge is said to be an entrance
to (or an exit from) the command c at vertex v if its destination (or origin) is
v. An interpretation I of a flowchart is a mapping of its edges on propositions.
Some, but not necessarily all, of the free variables of these propositions may
be variables manipulated by the program. Figure 1 gives an example of an
interpretation. For any edge e, the associated proposition I(e) will be called
the tag of e. If e is an entrance (or an exit) of a command c, I(e) is said to be
an antecedent (or a consequent) of c.

For any command c with k entrances and l exits, we will designate the entrances
to c by a1, a2, . . . , ak, and the exits by b1, b2, . . . , bl. We will designate the tag
of ai by Pi (1 ≤ i ≤ k), and that of bi by Qi (1 ≤ i ≤ l). Boldface letters will
designate vectors formed in the natural way from the entities designated by the
corresponding nonboldface letters: for example, P represents (P1, P2, . . . , Pk).

∞∞∞∞∞∞∞∞

4

In general, different executions of the same program on different inputs may
give rise to very different execution paths of varying lengths. To reason that
a program is correct (on all inputs), we need a proof method that covers all
the different execution scenarios.

Floyd states that a verification (equivalently, partial correctness proof) of
an interpretation of a flowchart need not be too cumbersome. We only need
to check

∞∞∞∞∞∞∞∞

for each command c of the flowchart, if control should enter the command by
an entrance ai with Pi true, then control must leave the command, if at all, by
an exit bj with Qj true.

∞∞∞∞∞∞∞∞

Task 1: Suppose it has been established that every command c in the
flowchart is “correct/verified” with respect to the antecedents and conse-
quents. By using mathematical induction on the number of steps of the
execution of a flowchart program, justify that interpretation of the flowchart
program is “correct”, in the sense that the tagged propositions are always
observed.

But, how can we do verification for each command c in a flowchart pro-
gram? Are we doing verification in an ad-hoc manner? Or, can there be a
mechanical/systematic way for doing verification for each command type?

Next, Floyd introduces the concept of a verification condition on the an-
tecedents and consequents of a command c. Given that a command c has
antecedents P = (P1, P2, . . . , Pk) and consequents Q = (Q1, Q2, . . . , Ql), the
verification condition, denoted by Vc(P; Q), gives the verification needed to
establish that

∞∞∞∞∞∞∞∞

if control should enter the command c by an entrance ai with Pi true, then
control must leave the command, if at all, by an exit bj with Qj true.

6

∞∞∞∞∞∞∞∞

It is natural to require that the verification conditions developed satisfy the
following:

∞∞∞∞∞∞∞∞

The verification condition must be so constructed that a proof that the verifica-
tion condition is satisfied for the antecedents and consequents of each command
in a flowchart is a verification of the interpreted flowchart.

∞∞∞∞∞∞∞∞

Floyd develops the verification condition for the assignment statement in a
series of steps. The verification condition obtained involves the use of exis-
tential quantifier. We give another formulation of the verification condition
for the assignment operator as follows:

The assignment statement x ← f(x,y) is verified for antecedent P1(x,y)
and consequent Q1(x,y) if we can show that

P1(x,y)→ Q1(f(x,y),y)

Task 2: Give an informal justification for the verification condition for
assignment operator.

To compute Q1(f(x,y),y), we substitute every occurrence of x in Q1(x,y)
by the expression f(x,y) given in right hand side of the assignment state-
ment x← f(x,y). The technique is called back substitution.

The verification conditions for other statement types are quite straightfor-
ward.

Consider the branch statement type. Suppose c is the branch (conditional)
statement with antecedent P1, conditional test Φ, consequent Q1 when Φ
is true, and consequent Q2 when Φ is false. The verification condition
Vc(P1;Q1, Q2) for the branch statement is

((P1 ∧ Φ)→ Q1) ∧ ((P1 ∧ ¬Φ)→ Q2)

7

Task 3: Give an informal justification for the verification condition for
branching operator.

In a flowchart program, there is a possibility that several branches are joining
and merging into one branch. In Figure 1, two branches are joining before
the statement that performs the test of whether i > n; one branch flows
down from the statement S ← 0, with another branch coming from the
lower part of the program after the assignment statement i← i + 1.

We consider the joining statement to be a dummy statement with an-
tecedents P and consequent Q1. If there are two branches joining, then
P = (P1, P2). Floyd gives the verification condition2 Vc(P1, P2;Q1) for the
joining statement as

(P1 → Q1) ∧ (P2 → Q1)

Task 4: Give an informal justification for the verification condition for
joining operator.

In Figure 1, we see that there are two other special statements. One is
the “start” statement and the other one is the “halt” statement. The tag
(proposition) for the edge after the start statement is given as

n ∈ J+ (J+ is the set of positive integers)

The condition that “n is a positive integer” is assumed to hold for the input.
Thus, the verification condition for the start statement is considered to be
true. On the other hand, the tag (proposition) for the edge before the halt
statement is

n ∈ J+ ∧ i = n + 1 ∧ S =
∑i−1

j=1 aj ; i.e., S =
∑n

j=1 aj

The tag before the halt statement is what the program is supposed to
achieve, a goal that we are not going to dispute. As in the case with the
start statement, the verification condition for the halt statement is again
considered to be true.

2Actually, Floyd gives the verification condition as (P1∨P2)→ Q1, which is equivalent
to (P1 → Q1) ∧ (P2 → Q1) according to mathematical logic.

8

4 Program Summation

Figure 1 gives an example flowchart program taken from Floyd’s paper for
computing S =

∑n
j=1 aj where n ≥ 0. Corresponding to the flowchart

program, we construct an equivalent while-loop program and an equivalent
assembly program3 as follows:

i = 1

S = 0

while (i <= n)

S = S + a_i

i = i + 1

1. <P1> i = 1

2. <P2> S = 0

3. <P3>

4. <P4> if (i > n) goto 8

5. <P5> S = S + a_i

6. <P6> i = i + 1

7. <P7> goto 4

8. <P8> Halt

P1 ≡ n ∈ J+ (J+ is the set of positive integers)
P2 ≡ n ∈ J+ ∧ i = 1
P3 ≡ n ∈ J+ ∧ i = 1 ∧ S = 0
P4 ≡ n ∈ J+ ∧ i ∈ J+ ∧ i ≤ n + 1 ∧ S =

∑i−1
j=1 aj

P5 ≡ n ∈ J+ ∧ i ∈ J+ ∧ i ≤ n ∧ S =
∑i−1

j=1 aj

P6 ≡ n ∈ J+ ∧ i ∈ J+ ∧ i ≤ n ∧ S =
∑i

j=1 aj
P7 ≡ n ∈ J+ ∧ i ∈ J+ ∧ 2 ≤ i ≤ n + 1 ∧ S =

∑i−1
j=1 aj

P8 ≡ n ∈ J+ ∧ i = n + 1 ∧ S =
∑i−1

j=1 aj ; i.e., S =
∑n

j=1 aj

The proposition Pi (where 1 ≤ i ≤ 8) is the antecedent of state-
ment/command i. Note that the propositions considered in the assembly
program are the same as the propositions considered in the flowchart pro-
gram.

3Another reason to favor assembly programs over flowchart is that we find it easier to
give references to the differenct edges/locations in an assembly program than in a flowchart
program.

9

To verify the given interpretation, we need to check to see if the verification
condition is satisfied for every statement in the flowchart/assembly program.

Task 5. What is the verification condition for statement 1? Show that
the verification condition for statement 1 is satisfied. Hint: the verification
condition involves P1, statement 1 and P2.

Task 6. What is the verification condition for statement 4 when it is consid-
ered as a branch statement with antecedent P4? Show that the verification
condition is satisfied. Hint: the verification condition involves P4, statement
4, P5 and P8.

As condition P4 can be reached from both statements 3 and 7, we can
also consider statement 4 as a dummy joining statement with consequent
P4. That is, statement 4 is a composite statement consisting of a dummy
joining statement followed by a branch statement.

Task 7. What is the verification condition for statement 4 when it is con-
sidered as a dummy joining statement (joining statements 3 and 7) with
consequent P4? Show that the verification condition is satisfied. Hint: the
verification condition involves P3, P4 and P7.

Task 8. Note that statement 3 is a dummy statement with antecedent
P3 and consequent P4, while statement 7 is also a dummy statement with
antecedent P7 and consequent P4. In general, given a dummy statement
with one antecedent P and one consequent Q, what should be the verification
condition? Show that the verification conditions for statements 3 and 7 are
satisfied.

Observe that the verification performed in Task 7 is equivalent to the verifi-
cations performed in Task 8. In fact there is no need to check the verification
for statement 4 as a dummy joining statement when verifications for state-
ments 3 and 7 are performed. Effectively, we just have to consider statement
4 as a branch statement, but not a dummy joining statement.

Task 9. What is the verification condition for statement 6? Show that
the verification condition for statement 6 is satisfied. Hint: the verification
condition involves P6, statement 6, and P7.

Task 10. Verify that the verification conditions for all the rest of the
statements are satisfied.

10

5 Program Square Root

Consider the following program4 which computes the integral part of the
square root of a given nonnegative integer. That is, given a, we want to
compute b = b

√
ac where bxc, called the floor of x, denotes the largest

integer not greater than x. Equivalently, b is a nonnegative integer such
that b2 ≤ a < (b + 1)2.

b = 0

c = 1

d = 1

while (c <= a)

b = b+1

d = d+2

c = c+d

The assembly program equivalent are as follows:

1. <P1> b = 0

2. <P2> c = 1

3. <P3> d = 1

4. <P4> if (c > a) goto 9

5. <P5> b = b+1

6. <P6> d = d+2

7. <P7> c = c+d

8. <P8> goto 4

9. <P9>

It is given that
P1 ≡ a ≥ 0
P9 ≡ (b ≥ 0) ∧ (b2 ≤ a) ∧ (a < (b + 1)2)
By proving that P9 holds when the program halts, we show that b is the
integral part of the square root of a.

To help you to tackle the correctness proof, the loop invariant P4 is given
below:

4The program is taken from page 4 of the monograph “Lecture on the logic of com-
puter programming” by Zohar Manna, CBMS-NSF regional conference series in applied
mathematics, 1980.

11

P4 ≡ (b ≥ 0) ∧ (b2 ≤ a) ∧ (c = (b + 1)2) ∧ (d = 2b + 1).

Task 11. What are P2, P3, P5, P6, P7, P8? Verify that the verification
conditions for all the statements are satisfied. (Hint: First, decide what to
choose for P8. Then use back substitutions to determine other assertions.)

6 Program Chocolate Bars

Suppose we can buy a chocolate bar from the retail store for $1 each. Inside
every chocolate bar, there is a coupon included. With 10 coupons, one can
redeem for one chocolate bar. The redeemed chocolate bar will itself have
another coupon. The following program computes the number of chocolate
bars that one can consume with n dollars:

// b denotes the number of chocolate bars

// c denotes the number of coupons

b = n

c = n

while (c >= 10)

c = c-9

b = b+1

Interestingly, the final answer for b can be computed by the arithmetic ex-
pression n + bn−19 c. In most programming languages, n + bn−19 c can be
written simply as n+ (n− 1)/9. The above loop program can be re-written
as the following assembly program:

1. <P1> b = n

2. <P2> c = n

3. <P3> if (c < 10) goto 7

4. <P4> c = c-9

5. <P5> b = b+1

6. <P6> goto 3

7. <P7>

It is given that
P1 ≡ n > 0
P7 ≡ b = n + bn−19 c

12

The loop invariant P3 is given as follows:

P3 ≡
(
b + b c−19 c = n + bn−19 c

)
∧ (c > 0)

Task 12. What are P2, P4, P5, P6 ? Verify that the verification condi-
tions for all the statements are satisfied. (Hint: First, decide what to choose
for P6. Then use back substitutions to determine other assertions.)

7 Program Partition

In page 171 of textbook “Introduction to Algorithms”, 3rd edition by Cor-
men, Leiserson, Rivest and Stein, the code for the Partition procedure of
Quicksort is given as follows:

Partition(A,p,r)

x = A[r]

i = p-1

for j = p to r-1

if (A[j] <= x)

i = i+1

exchange A[i] with A[j]

exchange A[i+1] with A[r]

return i+1

Let q be the value returned by Partition. The mission of the procedure is
to partition (rearrange) the subarray A[p..r] into two subarrays A[p..q − 1]
and A[q + 1..r] such that each element of A[p..q− 1] is less than or equal to
A[q], which is, in turn, less than or equal to each element of A[q + 1..r].

We can re-write the program into an equivalent assembly program as follows:

1. <P1> x = A[r]

2. <P2> i = p-1

3. <P3> j = p

4. <P4> if (j > r-1) goto 10

5. <P5> if (A[j] > x) goto 8

6. <P6> i = i+1

13

7. <P7> exchange A[i] and A[j]

8. <P8> j = j+1

9. <P9> goto 4

10. <P10> exchange A[i+1] and A[r]

11. <P11> q = i+1

12. <P12>

It is given that
P1 ≡ p ≤ r
and
P12 ≡ (∀k, (p ≤ k ≤ q− 1)→ (A[k] ≤ x))∧ (∀k, (q + 1 ≤ k ≤ r)→ (A[k] > x))∧ (A[q] =

x) ∧ (p ≤ q ≤ r)

Technically, it is not accurate to say that Partition is correct just by show-
ing that P12 holds when the program halts. A more careful proof needs to
argue that the resulting array (from index p to index r) is a re-arrangement
(or, permutation) of the original array from the same set of indices. How-
ever, one can easily see that this is true since the program limits itself in
performing swapping of array entries from index p to index r. The fact that
we are only swapping array entries between index p and index r is going
to be part of the proof that you are constructing. That is, in P7, we have
to show that p ≤ i ≤ j ≤ r. Similarly, in P10, we also have to show that
p ≤ i + 1 ≤ j ≤ r.

In page 146 of the textbook, a proposition is given for the loop invariant,
which translates to the following proposition for P4:
(∀k, (p ≤ k ≤ i) → (A[k] ≤ x)) ∧ (∀k, (i + 1 ≤ k ≤ j − 1) → (A[k] > x)) ∧ (A[r] =

x) ∧ (p− 1 ≤ i < j ≤ r)

Task 13. What are P2, P3, P5, P6, P7, P8, P9, P10, P11 ? Verify
that the verification conditions for all the statements are satisfied.

8 Remarks

In proving the correctness of a program, the most challenging part is to
give the assertion (called the loop invariant) that associates with the while-
statement (or, for-statement). In the four programs considered in this
project, with the loop invariants given, the rest of the assertions can be
determined in a rather systematic and mechanical manner.

14

Appendix (Hoare’s Method)

Floyd’s method considers the verification condition of statements for
flowchart/assembly program. Hoare’s method explains how to verify pro-
gram properties for high level programming languages whose statement
types include while-statements and if-statements.

Notation: Let S be a block of statements (or, a program). We write

{P} S {Q}

if given the antecedent P , the consequent Q holds after the execution of S.

Assignment Rule

From the verification condition for assignment statement x ← f(x,y) of
Floyd’s method, it is clear that the following holds

{Q(f(x,y),y)} x← f(x,y) {Q(x,y)}

If Rule

Consider the if-statement

if (c) then S1 else S2

Suppose we want to establish

{P} if (c) then S1 else S2 {Q}

where P is the antecedent and Q is the consequent. Given that P is the
antecedent condition for the if-statement, both P and c hold when the pro-
gram starts executing S1. Similarly, P and ¬c hold when the program
begins executing S2. In order the consequent Q holds for the if-statement,
it is required that both

{P ∧ c} S1 {Q}

and
{P ∧ ¬c} S2 {Q}

are true. To summarize, given that

{P ∧ c} S1 {Q}, {P ∧ ¬c} S2 {Q}

15

it follows that
{P} if (c) then S1 else S2 {Q}

As a special case when S2 is a dummy statement, given that

{P ∧ c} S1 {Q}, (P ∧ ¬c)→ Q

the following holds:
{P} if (c) then S1 {Q}

While Rule

Consider the while-statement

while (c) S

where c is the condition and S is the body of the loop. Suppose I is the
proposed loop invariant. The antecedent condition for S is I ∧ c as both I
and c holds when the program starts executing S. In order that the loop
invariant holds again after the execution of S, it is necessary that I is the
consequent of S. Thus,

{I ∧ c} S {I}

By picking the antecedent for the while statement as I, and given that
{I ∧ c} S {I} holds, the loop invariant I holds and the consequent for the
while-statement is thus I ∧ ¬c. To summarize, given that

{I ∧ c} S {I}

is verified, the following holds about the while-statement:

{I} while (c) S {I ∧ ¬c}

Consequence Rule

It should be clear that given

{P} S {Q}, P ′ → P, Q→ Q′

then the following holds
{P ′} S {Q′}

16

Composition Rule

It should be clear that given

{P} S1 {Q}, {Q} S2 {R}

then the following holds
{P} S1; S2 {R}

Task 14. Using Hoare’s method for while-loop programs, re-do the partial
correctness proofs for Program Square Root, Program Chocolate Bars and
Program Partition. Hint: Program Partition needs to be re-written using a
while-loop instead of a for-loop.

17

Notes to the Instructor

The project is designed to focus on the key ideas in program correctness,
rather than on the formal aspects of the theory. Terminologies like axioms,
inferences, and deductive systems are deliberately avoided. Emphasis is
placed on the practice of proving the partial correctness of interesting pro-
grams. It is the author’s belief that the students will appreciate better the
power of program correctness through the analysis of seemingly simple and
yet non-trivial programs. Furthermore, the students will hopefully learn
how to write better programs as a result of this study.

The project is suitable for upper undergraduate level Algorithms course, or
Programming Languages course. Most of the work can be completed by the
students individually.

Floyd’s flowchart program for correctness proof is an excellent example.
Instructor should slow down in going over this example. Students should be
given ample time to analyze the annotations given in the flowchart program.
The objective is to develop an informal understanding through induction
principle that the annotations together constitute a partial correctness proof.

The correctness proof (Task 13) of Partition procedure is very challenging.
It may be skipped if time is not permitted, or if the students are finding
it too difficult. Students can also tackle Task 13 collaboratively. Work
can assigned in three parts (Tasks 1-10, Tasks 11-12, and Task 13) with
one week given for each part. Task 14 can be considered as extra credit.
After students’ answers for the first part (Tasks 1-10) have been turned in,
the instructor can discuss the uses of back substitutions (as given in the
verification condition for the assignment operator) that are required for the
answers for Tasks 9 and 10, so as to be sure that the students are ready to
take on the tasks given in the sections 5, 6 and 7.

The project has not covered termination proof. Unlike partial correctness
proof, the concept of termination proof is quite straightforward. Students
will find good discussion about termination proof in the textbooks.

18

