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1 Introduction

In a 1751 letter to Christian Goldbach (1690–1764), Leonhard Euler (1707–1783) discusses the
problem of counting the number of triangulations of a convex polygon. Euler, one of the most prolific
mathematicians of all times, and Goldbach, who was a Professor of Mathematics and historian at
St. Petersburg and later served as a tutor for Tsar Peter II, carried out extensive correspondence,
mostly on mathematical matters. In his letter, Euler provides a “guessed” method for computing
the number of triangulations of a polygon that has n sides but does not provide a proof of his
method. The method, if correct, leads to a “formula” for calculating the number of triangulations
of an n-sided polygon which can be used to quickly calculate this number [3, p. 339–350] [4]. Later,
Euler communicated this problem to the Hungarian mathematician Jan Andrej Segner (1704–
1777). Segner, who spent most of his professional career in Germany (under the German name
Johann Andreas von Segner), was the first Professor of Mathematics at the University of Göttingen,
becoming the chair in 1735. Segner “solved” the problem by providing a proven correct method
for computing the number of triangulations of a convex n-sided polygon using the number of
triangulations for polygons with fewer than n sides [8]. However, this method did not establish the
validity (or invalidity) of Euler’s guessed method. Segner communicated his result to Euler in 1756
and in his communication he also calculated the number of triangulations for the n-sided polygons
for n = 1, 2, 3, . . . , 20 [8]. Interestingly enough, he made simple arithmetical errors in calculating
the number of triangulations for polygons with 15 and 20 sides. Euler corrected these mistakes and
also calculated the number of triangulations for polygons with up to 25 sides. It happens that with
the corrections, Euler’s guessed method provides the correct number of triangulations of polygons
with up to 25 sides.

Was Euler’s guessed method correct? It appeared so, but there was no proof. The problem was
posed as an open challenge to mathematicians by Joseph Liouville (1809–1882) in the late 1830s.
He received solutions or purported solutions to the problem by many mathematicians (including
one by Belgian mathematician Eugène Charles Catalan (1814–1894) which was correct but not so
elegant), some of which were later published in the Liouville journal, one of the primary journals
of mathematics at that time and for many decades. The most elegant of these solutions was
communicated to him in a letter by Gabriel Lamé (1795–1870) in 1838. Lamé’s equation (3),
appearing near the end of §2 of this project, was likely Euler’s guessed formula, while Lamé’s
equation (1) appearing at the beginning of §2 offers a recursion relation for these numbers which is
quite difficult to solve. The reader is asked to appreciate Lamé’s clever reduction of equation (1)
to equation (3).
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The French mathematician, engineer and physicist Gabriel Lamé was educated at the prestigious
Ecole Polytéchnique and later at the Ecole des Mines [5, p. 601–602]. From 1832 to 1844 he served as
the chair of physics at the Ecole Polytéchnique, and in 1843 joined the Paris Academy of Sciences
in the geometry section. He contributed to the fields of differential geometry, number theory,
thermodynamics and applied mathematics. Among his publications are textbooks in physics and
papers on heat transfer, where he introduced the rather useful technique of curvilinear coordinates.
In 1851 he was appointed Professor of Mathematical Physics and Probability at the University of
Paris, and resigned eleven years later after becoming deaf. Gauss considered Lamé the foremost
French mathematician of his day [5, p. 601–602].

The triangulation problem can be stated as follows. Given a convex n-sided polygon, divide it
into triangles by drawing non-intersecting diagonals connecting some of the vertices of the polygon.
Euler calculated the number, Pn, of distinct triangulations of a convex n-gon for the first few values
of n, and conjectured a formula for Pn based on an empirical study of the ratios Pn+1/Pn [3, p.
339-350] [4]. Lamé was one of the first to provide the details for a combinatorial proof of Euler’s
conjectured result for Pn+1/Pn, a proof which the reader will study in its original (translated)
version in this project.

Although Euler does not state his motivation for studying the triangulation problem, it may
have roots in surveying, where a given region to be surveyed is divided into triangles, with the three
vertices of the triangle serving as reference points. A modern use of triangulation is the Global
Positioning System, where readings from three satellites are used to determine the position of a
point on earth. For this project, however, we will consider polygons P in the plane with the property
that if A and B are points in P, then the line segment connecting A and B is also contained in
P. This latter property is expressed by stating that P is convex. As a further simplification, we
will often use regular polygons, which have all sides congruent and all angles congruent. Lamé, not
Euler, uses the subscripted notation Pn to denote the number of triangulations of a convex polygon
with n sides.

Exercise 1.1. Explain why P3 = 1.

To determine P4, consider the following triangulations of square A1A2A3A4.
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Exercise 1.2. Can you find any other ways to triangulate square A1A2A3A4 with non-intersecting
diagonals? What is the value of P4?

Exercise 1.3. Let A1A2A3A4A5 be a regular pentagon and compute P5, the number of distinct
triangulations of the pentagon. Can you identify how the number of triangulations of a convex
quadrilateral (or square) enters into the calculation of the triangulations of the pentagon? Consider
triangulations of the pentagon which contain the triangle A1A2A3 first, then triangle A1A2A4, then
triangle A1A2A5. Write an equation for P5 in terms of P4 and P3.

Exercise 1.4. Let A1A2 . . . A6 be a regular hexagon. Devise a strategy for computing P6 by using
the previous results for a pentagon, quadrilateral, and a triangle. Be sure to explain your approach.
What is the value of P6?
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Exercise 1.5. Find a recursion relation for Pn+1 in terms of the previous Pk’s. Be sure to justify
your answer. For what values of k must Pk be known in order to compute Pn+1? Compare your
result with §I from Lamé’s letter [7] in the next part.

2 Lamé’s Letter to Liouville

Extrait d’une lettre de M. Lamé à M. Liouville sur cette question: Un polygone convexe
étant donné, de combien de manières peut-on le partager en triangles au moyen de diagonales?1

Translation copyright c© 2004 by David Pengelley

∞∞∞∞∞∞∞∞

Excerpt from a letter of Monsieur Lamé to Monsieur Liouville on the question: Given
a convex polygon, in how many ways can one partition it into triangles by means of diagonals?1

The formula that you communicated to me yesterday is easily deduced from the comparison of two
methods leading to the same goal.

Indeed, with the help of two different methods, one can evaluate the number of decompositions of
a polygon into triangles: by consideration of the sides, or of the vertices.

I.

Let ABCDEF . . . be a convex polygon of n+1 sides, and denote by the symbol Pk the total number
of decompositions of a polygon of k sides into triangles. An arbitrary side AB of ABCDEF . . . serves
as the base of a triangle, in each of the Pn+1 decompositions of the polygon, and the triangle will have
its vertex at C, or D, or F . . . ; to the triangle CBA there will correspond Pn different decompositions;
to DBA another group of decompositions, represented by the product P3Pn−1; to EBA the group
P4Pn−2; to FBA, P5Pn−3; and so forth, until the triangle ZAB, which will belong to a final group Pn.
Now, all these groups are completely distinct: their sum therefore gives Pn+1. Thus one has

(1) Pn+1 =

Pn + P3Pn−1 + P4Pn−2 + P5Pn−3 + · · ·+ Pn−3P5 + Pn−2P4 + Pn−1P3 + Pn.

∞∞∞∞∞∞∞∞

Exercise 2.1. For n = 4, interpret equation (1) above to reflect the calculation of P5 completed
in Exercise (1.3). Note that the term P3P3 occurs only once in P5.

1See a Memoir of Segner (Novi Commentarii Acad. Petrop., vol. VII, p. 203). The author found equation (1) of M.
Lamé; but formula (3) presents a much simpler solution. Formula (3) is no doubt due to Euler. It is pointed out without
proof on page 14 of the volume cited above. The equivalence of equations (1) and (3) is not easy to establish. M. Terquem
proposed this problem to me, achieving it with the help of some properties of factorials. I then communicated it to various
geometers: none of them solved it; M. Lamé has been very successful: I am unaware of whether others before him have
obtained such an elegant solution. J. Liouville (This footnote actually appears in the paper.)
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Exercise 2.2. For n = 5, interpret equation (1) above to reflect the calculation of P6 completed
in Exercise (1.4).

Exercise 2.3. Find an equivalent expression for (1) using summation notation, i.e., Pn+1 =
∑

? .
If necessary, use the convention P2 = 1.

Exercise 2.4. Explain why the triangulations belonging to the groups

Pn, P3Pn−1, P4Pn−2, . . . , Pn−1P3, Pn

are distinct.

Exercise 2.5. Does every triangulation of a convex polygon with n + 1 sides occur in one of the
groups represented by

Pn, P3Pn−1, P4Pn−2, . . . , Pn−1P3, Pn ?

Why or why not?

Exercise 2.6. Use Lamé’s recursion relation of §I to compute P10. What difficulties do you
encounter in this computation?

In §I of his letter, Lamé uses triangle A1A2Ak to divide the (n+1)-sided polygon A1A2A3 . . . An+1

into two sub-polygons. The triangulations for the sub-polygons then figure into the recursion re-
lation for Pn+1. In §II Lamé changes his point of view, and uses instead the diagonal A1Ak to
divide the n-gon A1A2A3 . . . An into two sub-polygons. Let’s examine the consequences of using a
diagonal instead of a triangle to divide the polygon.

Exercise 2.7. Consider a regular pentagon A1A2A3A4A5. Using diagonal A1A3 to split the pen-
tagon into two figures, how many resulting triangulations of the original pentagon are there? Let
T1 denote the set of these triangulations. Using diagonal A1A4, how many triangulations of the
pentagon are there? Let T2 denote the set of these triangulations. Compute the sum of the cardi-
nality (the number of elements) of T1 and T2, and let S5 denote this value. How does S5 compare to
P5? Are all elements of T1 and T2 distinct? Is every possible triangulation of the original pentagon
an element of T1 ∪ T2? Justify your answers.

Exercise 2.8. Consider a regular hexagon A1A2A3 . . . A6. Let T1 be the set of all triangulations
of the hexagon that are formed using the diagonal A1A3. Let T2 be the set of triangulations of the
hexagon using A1A4, and T3 the set of triangulations using A1A5. Compute

S6 = |T1|+ |T2|+ |T3| ,

where |Ti| denotes the cardinality of Ti. Do you recognize this sum? How does S6 compare to P6?
Are all elements of T1 and T2 distinct? Is every triangulation of the original hexagon an element
of T1 ∪ T2 ∪ T3? Justify your answers.

Exercise 2.9. Consider now a regular n-gon A1A2A3 . . . An−1An. Let Ti be the set of all trian-
gulations of the n-gon which are formed using the diagonal A1Ai+2 for i = 1, 2, 3, . . ., n− 3. Write
an algebraic expression for

Sn = |T1|+ |T2|+ |T3|+ · · ·+ |Tn−3|

in terms of the Pk’s. How does Sn compare to Pn? Are the sets T1 and T2 disjoint? Is every
triangulation of the original n-gon an element of

T1 ∪ T2 ∪ T3 ∪ · · · ∪ Tn−3 ?

Justify your answer.
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Let’s now read from §II of Lamé’s letter.

∞∞∞∞∞∞∞∞

II.

Let abcde . . . be a polygon of n sides. To each of the n− 3 diagonals, which end at one of the vertices
a, there will correspond a group of decompositions, for which this diagonal will serve as the side of two
adjacent triangles: to the first diagonal ac corresponds the group P3Pn−1; to the second ad corresponds
P4Pn−2; to the third ae, P5Pn−3, and so forth until the last ax, which will occur in the group P3Pn−1.
These groups are not totally different, because it is easy to see that some of the partial decompositions,
belonging to one of them, is also found in the preceding ones. Moreover they do not include the partial
decompositions of Pn in which none of the diagonals ending in a occurs.

∞∞∞∞∞∞∞∞

Exercise 2.10. In the above statement, what groups is Lamé referring to by “[T]hese groups are
not totally different”? What notation have we used for “diagonals ending in a”?

Lamé’s use of diagonals leads to an enumeration of triangulations which is neither one-to-one nor
inclusive of all triangulations. His genius, however, was to slightly alter this strategy to first include
all triangulations, and then to count how many times a generic triangulation occurs. Combined
with the results of §I, this results in a streamlined computation for Pn.

Exercise 2.11. Returning to pentagon A1A2A3A4A5, recall that S5 counts with certain repetitions
the number of triangulations arising from diagonals A1A3 and A1A4. How many triangulations,
counting possible repetitions, would occur if diagonals A2A4 and A2A5 are used? Denote this

number by S
(2)
5 . How many triangulations, counting possible repetitions, would occur if diagonals

A3A5 and A3A1 are used? Denote this number by S
(3)
5 . Similarly, let S

(4)
5 denote the number of

triangulations with repetition formed by diagonals A4A1 and A4A2. Compute S
(4)
5 . What diagonals

would be used to define S
(5)
5 ? Compute S

(5)
5 and

∑5
i=1 S

(i)
5 , where S

(1)
5 = S5.

Exercise 2.12. Let T be an arbitrary triangulation of the pentagon. Must T be included in the
count

S
(1)
5 + S

(2)
5 + S

(3)
5 + S

(4)
5 + S

(5)
5 ?

Justify your answer. How many times does T occur in the sum
∑5

i=1 S
(i)
5 ? Why? Use this number

of duplications to find integers K and L with

K · S5 = L · P5

and justify your answer.

Exercise 2.13. For the hexagon, consider numbers S
(1)
6 , S

(2)
6 , . . ., S

(6)
6 defined similarly. Based on

the number of times a generic triangulation is counted in
∑6

i=1 S
(i)
6 , find integers K and L with

K · S6 = L · P6 ,

and justify your answer.
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Exercise 2.14. For a regular n-gon, find integers K and L with

K · Sn = L · Pn ,

where L indicates the number of times a fixed triangulation occurs in the count
∑n

i=1 S
(i)
n .

Lamé continues:

∞∞∞∞∞∞∞∞

But if one does the same for each of the other vertices of the polygon, and combines all the sums
of the groups of these vertices, by their total sum n (P3Pn−1 + P4Pn−2 + · · ·+ Pn−2P4 + Pn−1P3) one
will be certain to include all the partial decompositions of Pn; each of these is itself repeated therein a
certain number of times.

Indeed, if one imagines an arbitrary such decomposition, it contains n−2 triangles, having altogether
3n−6 sides; if one removes from this number the n sides of the polygon, and takes half of the remainder,
which is n− 3, one will have the number of diagonals appearing in the given decomposition. Now, it is
clear that this partial decomposition is repeated, in the preceding total sum, as many times as these n−3
diagonals have ends, that is 2n− 6 times: since each end is a vertex of the polygon, and in evaluating
the groups of this vertex, the diagonal furnished a group including the particular partial decomposition
under consideration.

Thus, since each of the partial decompositions of the total group Pn is repeated 2n − 6 times in
n (P3Pn−1 + P4Pn−2 + · · ·+ Pn−2P4 + Pn−1P3), one obtains Pn upon dividing this sum by 2n − 6.
Therefore one has

(2) Pn =
n (P3Pn−1 + P4Pn−2 + · · ·+ Pn−2P4 + Pn−1P3)

2n− 6
.

∞∞∞∞∞∞∞∞

Exercise 2.15. In equation (2) identify terms which play the role of Sn, K and L.

Lamé’s equations (1) and (2) thus represent two strategies for computing Pn, although each
equation is itself a recursion relation requiring the value of P3, P4, . . ., Pn−1 to compute Pn. Can
these two equations be combined to solve for Pn directly?

Exercise 2.16. Find a fraction N with Pn+1 = NPn. Be sure to carefully justify your work. Use
this equation to find a fraction N ′ with Pn+1 = N ′Pn−1.

Lamé concludes:

∞∞∞∞∞∞∞∞

III.
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The first formula (1) gives

P3Pn−1 + P4Pn−2 + · · ·+ Pn−2P4 + Pn−1P3 = Pn+1 − 2Pn,

and the second (2) gives

P3Pn−1 + P4Pn−2 + · · ·+ Pn−2P4 + Pn−1P3 =
2n− 6

n
Pn;

so finally

Pn+1 − 2Pn =
2n− 6

n
Pn,

or

(3) Pn+1 =
4n− 6

n
Pn.

This is what was to be proven.

Paris, 25 August, 1838.

∞∞∞∞∞∞∞∞

3 A Modern Formula

Exercise 3.1. Let P2 = 1. Using the simple recursion relation Pn+1 = NPn, explain why

P3 =
2

2
P2

P4 =
2

2
· 6

3
P2

Find an integer M with

P5 =
2 · 6 ·M
2 · 3 · 4

P2.

Letting M1 = 2 and M2 = 6, find integers M3, M4, M5, . . ., Mn−1 with

Pn+1 =
M1 ·M2 ·M3 ·M4 · · · Mn−1

2 · 3 · 4 · 5 · · · n
P2.

We have n! = 2 · 3 · 4 · 5 · · · n. Factor a 2 from each Mi to write

Pn+1 = 2x
(M1/2)(M2/2) · · · (Mn−1/2)

n!
P2.

What is the value of x? Do you recognize the product

n−1∏
i=1

(Mi/2) = (M1/2)(M2/2)(M3/2) · · · (Mn−1/2) ?

What is missing from
∏n−1

i=1 (Mi/2) to form a factorial? Include the missing terms in both the
numerator and denominator to write

Pn+1 =
(2n− 2)!

D1 n!
P2 ,

7



for some integer D1. Find an integer D2 with

Pn+1 =
1

D2

(
2n− 2

n− 1

)
P2.

Justify your answer via a direct argument.

Exercise 3.2. Use the above equation for Pn+1 to compute P10 and compare this to Exercise (2.6).
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Notes to the Instructor

This project contains original source material from Gabriel Lamé’s 1838 publication “Given a
convex polygon, in how many ways can one partition it into triangles by means of diagonals?”
[7]. The paper, written as a letter to Joseph Liouville, develops a clever and highly original
method for counting the number of triangulations of a convex polygon, yielding what today is
called the sequence of Catalan numbers. Catalan’s own derivation of these numbers, however,
is somewhat difficult to follow. Lamé’s method relies on an averaging argument over certain
symmetries of a (regular) polygon. The project offers engaging material for an upper-divisional
course in combinatorics or discrete mathematics. Section two of the project carefully leads the
reader through Lamé’s argument with several student exercises. This section closes with Lamé’s
simple recursion relation for the number of triangulations of a convex polygon. The third section
offers a formulation of these numbers in terms of binomial coefficients. A prerequisite for the
project is an introductory course in discrete mathematics covering binomial coefficients and
the concept of a one-to-one correspondence. If the project is covered in its entirety, allow about
three weeks.

A version of this curricular module for a computer science course has been written by Desh
Ranjan [1, 2] in which the running times for Lamé’s equations (1) and (3) are compared.
Both the programming version and this mathematical version share the same introduction,
co-authored by Desh Ranjan and Jerry Lodder. The Catalan numbers occur quite naturally
in other enumeration problems, such as counting the number of rooted, binary planar trees.
Every triangulation of a convex polygon corresponds to such a binary tree and vice versa.
Although this correspondence is not developed in the project, it could be discussed in class.
For a study of other applications of these numbers, see the text by Koshy [6].

9


