
 Seeking Relevance? Try
 the History of Mathematics
 By FRANK J. SWETZ, Pennsylvania State University, Middletown, PA 17057

 What is mathematics? This seems like a curious question to pose to a read
 ing audience of mathematics educators, but
 I would wager that, on reflection, it is a
 difficult one to answer. Of course, a variety
 of quips and clich?s can supply the answer:
 "It's an art," "A science?in fact, it's the
 queen and the servant of science," "It's
 what I use when I balance my checkbook,"
 "A game that we play with rules we're not
 quite sure of," and the apologetic favorite,
 "Something I was never good at"; and so
 the list can go on and on. What these an
 swers seem to avoid is the fact that math
 ematics is a necessary human activity, one
 that reflects a response to needs dictated by
 human existence itself. Mathematics is evi
 dent in all societies and cultures. The needs
 to which it responds are both material and
 intellectual, and as they change, so does
 the nature of the mathematics that serves
 them ; thus, mathematics is a body of knowl
 edge that is constantly evolving in response
 to societal conditions.

 Just as each of the responses given in
 reply to the initial question is one dimen
 sional, so, all too often, is our teaching of

 mathematics one dimensional. We fre
 quently find ourselves concentrating on the
 teaching of "mathematics"?the symbols,
 the mechanics, the answer-resulting
 procedures?without really teaching what
 mathematics is "all about"?where it
 comes from, how it was labored on, how
 ideas were perceived, refined, and devel
 oped into useful theories?in brief, its
 social and human relevance. At best, this
 practice will produce knowledgeable tech
 nicians who can dispassionately use math
 ematics, but it will also produce students
 who perceive mathematics as an incompre
 hensible collection of rules and formulas
 that appear en masse and threateningly de
 scend on them.

 Unfortunately, in our schools, this latter
 group is in the majority. These students
 build psychological barriers to true math
 ematical understanding and develop anx
 ieties about the learning and use of math
 ematics. Teachers can partially remedy this
 situation by incorporating a historical per
 spective into the teaching of mathematics.

 History is commonly taught in schools to
 initiate the young into a community?to
 give them an awareness of tradition, a feel
 ing of belonging, and a sense of partici
 pation in an ongoing process or institution.
 Similar goals can be advocated for the
 teaching of the history of mathematics. By
 incorporating some history into teaching

 mathematics, teachers can lessen its stulti
 fying mystique. Mathematics isn't some
 thing magic and forbiddingly alien, but
 rather it's a body of knowledge naturally
 developed by people over a 5000-year
 period?people who made mistakes and
 were often puzzled but who worked out
 solutions to their problems and left records
 of those solutions so that we can benefit
 from them. Its teaching should recognize
 and promote these people-centered facts.

 Certainly, the chronicles of mathematics
 possess all the facets of human drama that
 capture the imagination and perpetuate in
 terest: mystery, adventure, intrigue, and so
 on. High drama, as well as a nice introduc
 tion to the theory of mathematical mod
 eling, can be found in a consideration of
 Galileo's challenge to the Ptolemic theory
 of planetary motion. Mystery abounds in
 numerology, the construction and purpose
 of the Egyptian pyramids, and the ap
 pearance of mathematical constants such as
 pi and e in diverse phenomena. The histori
 cal search for higher order constructible
 regular polygons provides adventure. In
 trigue can be found in "Dungeon and
 Dragon "-type secret numerical codes that
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 were popular in the Middle Ages or in
 the appearance of descriptive geometry in
 1789 as a military weapon. The history of
 mathematics can convey the heights of
 human ingenuity and creative genius?for
 example, Cantor's diagonal proof of the un
 countability of the real numbers?or
 demonstrate the foibles of human under
 standing as illustrated by the continued ex
 istence of proofs of the trisectibility of an
 angle. Such material can breathe life into
 mathematics lessons.

 Incorporating History
 into Mathematics Teaching

 Mathematics teaching can thus be human
 ized by the inclusion of historical per
 spectives in classroom discussions. This
 can, and should, be done unobtrusively by
 the use of historical anecdotes, films, proj
 ects, displays, and problems in teaching
 presentations as well as the replication of
 relevant historical experiments, e.g., the es
 timation of by a method of exhaustion
 (NCTM 1969). It should be done in a natu
 ral way as an integral part of the lesson?
 no announcements to the effect that "now
 we're going to talk about the history of
 mathematics " should take place !

 Consider, for example, how lessons on
 the development of a numeration system
 might be historically enhanced. A dis
 cussion can point out how our present
 system of numerals evolved from simple
 tally symbols such as 1 ? and how
 writing familiarity and a quest for speed
 transformed these symbols to |zl ,
 The evolution of arabic numerals from such
 primitive tally strokes to the modern liquid
 crystal displays of hand-held calculators or
 the numerals on bank checks can be demon
 strated by the use of a simple chart (fig. 1).
 Are the black lines employed by optical
 scanners to read the price of a box of soap
 powder the modern equivalent of tally
 strokes?

 Frequently in the teaching of number
 bases, references are made to Egyptian and
 Babylonian number systems. Instead of just
 talking about hieroglyphic and cuneiform
 numerals, one can generate much more ex
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 Fig. 1. An evolution of numerals

 citement by giving students an opportunity
 actually to translate them from facsimilies
 of ancient records. A minimum student
 knowledge of hieroglyphic numerals and
 guided inspection of the contents of figure 2
 could reveal the fact that the ancient
 Egyptians knew the formula for the compu
 tation if the volume of the frustum of a
 square pyramid, i.e.,

 V = - h(a2 + ab + b2), o

 where a and b are measures of the sides of
 the bases and h a measure of the height.
 As a result of such activities many

 questions arise. Each question, itself, offers
 new learning opportunities, and its answers
 can lead to profound insights into the
 growth process of mathematical ideas and

 unan  ! ! foi?*
 mm, 111 io  ^iiiin?/

 ?m <^>?
 I ? ?iTV=> - ? ii<L.

 M inno e ? ,-^- limosa K^P1' iiin?=7

 Fig. 2. Egyptians knew formulas for the volume of
 pyramids.
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 techniques. As an illustration of such pos
 sibilities, consider the following sequence
 of questions and findings that might logi
 cally emanate from a discussion of numer
 ation systems.

 Why did the use of Roman numerals
 dominate European culture for such a long
 period of time? How did our modern algo
 rithms for the basic operations evolve? For
 example, in fifteenth-century Italy eight al
 gorithmic schemes were accepted for ob
 taining the product of two multidigit num
 bers. (Some are shown in fig. 3.) Even when
 attempts to standardize a particular method
 took place, the desired result was slow in
 coming, as demonstrated by the format of
 the same illustrative multiplication exam
 ple appearing in different editions of Ta
 glienti Libro Dabaco over a fifty-year
 period (fig. 4).

 Was such confusion the result of the
 printer's incompetence, or does it reflect
 the author's continuing modification of the
 algorithmic form? What factors contributed
 to the popularization of an algorithm? Con
 sider the case of the "galley," or "battelo,"
 method of division that was favored among
 Renaissance mathematicians. Although it
 was mathematically efficient, it was not
 popular with printers who had the task of

 (1515) (1520) (1541)
 456 456 456

 _23_ _23_ 23
 1368 1368 136 8
 912 912 912
 10488 10488 1048 8

 (1550) (1567)
 456 456
 23 23

 136 8 1368
 912 912
 104 88 10488

 Fig. 4. Attempts to standardize an algorithm

 setting the type to reproduce it; thus, the
 algorithm fell into disuse (fig. 5).

 Examinations of the content of the his
 tory of mathematics frequently reveal strik
 ing similarities to present-day mathemat
 ical situations and procedures. How were
 square roots handled in antiquity? See
 figure 6. It is interesting to note that the
 Babylonians used a "divide and average"
 method of finding square roots: Given a
 number x, we wish to find the square root
 of . Guess at the root and call it a. Then
 use the following procedure :

 9  4
 3 3 6/4
 9 3 4/i
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 Fig. 3. Some multiplication algorithms  Fig. 5. "Galley" division
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 Fig. 6. Finding square roots

 X 7*1+01

 x_ _ r2 + a2 _

 r3 + a3

 Continue this process until the desired
 degree of accuracy is achieved. What makes
 the technique even more interesting is that
 it is one of the earliest examples of an itera
 tive process that we know, and iterative
 computing processes lie at the heart of
 modern computer operations. Our math
 ematical continuity with the past is ever
 present. In particular, iteration and ap
 proximation have always been and always
 will be integral components of compu
 tational processes. When discussing the his
 tory of mathematics, it is important to rec
 ognize the role of approximation in the ef
 forts of human beings to quantify their
 world. "How good and useful were such ap
 proximations?" is a question that should
 frequently be brought before students. For
 example, Chinese mathematicians of the
 early Han dynasty (ca. 300 b.c.) used a trap

 Fig. 7. A trapezoidal approximation for area

 ezoidal approximation for the area A of the
 segment of a circle,

 A = ^(C+S),
 where C is the measure of the length of the
 chord involved and S is the measure of the
 length of the sagitta of the segment (fig. 7).
 How good is this approximation?

 Mathematics has sometimes been de
 scribed as a "study of patterns." History
 would seem to affirm this description. Num
 bers and number patterns, especially those
 that demonstrated an emergence of regu
 larity out of apparent disarray, fascinated
 early observers, and magical number mean
 ings and configurations were created. The

 magic square exemplifies this facet of math
 ematical history. See figure 8. The Chinese
 saw in their Lo shu magic square (8a) the
 origins of science and mathematics,
 whereas the Hebrews used a serrated ver
 sion of the same square to present the
 sacred name "Yahweh" in coded form (8b);
 in turn this square found its way into Islam,
 where it became a talisman painted on
 dinner plates that were sold to Europeans
 to ward off the Black Death (8c).
 Although magic squares and number con
 figurations began as symbolic devices of su
 pernatural significance, they eventually
 evolved into intellectual challenges, in
 triguing such notable personages as Benja
 min Franklin (fig. 9a), and were used as
 schemes to sharpen inductive reasoning
 powers and build problem-solving skills

 January 1984  57

This content downloaded from 
� � � � � � � � � � � 100.15.107.192 on Wed, 16 Aug 2023 02:11:10 +00:00� � � � � � � � � � �  

All use subject to https://about.jstor.org/terms



 fa
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 (b) Yahweh

 r  4 9 2

 = 3 5 7

 8 1 6

 (c) "Clean plate" talisman

 Fig. 8

 among Chinese mathematicians of the Ming
 dynasty (fig. 9b). Their appeal and compu
 tational attraction are equally relevant to
 our students, who can explore and unravel
 their mysteries with the assistance of hand
 held calculators.

 Frequently, historical material fur
 nishes truly elegant examples and expla
 nations that can be adopted for classroom
 use. Consider the traditional and univer
 sally popular "bride's chair" proof of the
 Pythagorean theorem shown in figure 10.
 Although this proof is mathematically ap
 pealing, its level of sophistication limits its
 pedagogical usefulness. At times it has been
 described as a "mouse trap proof" and "a
 proof walking on stilts, nay, a mean, under
 handed proof" (Kline 1962, p. 50). An alter
 native proof, one that lends itself nicely to

 an overlay-overhead projector demon
 stration, is the "husan-thu" proof offered
 by Chinese mathematicians of the early
 Han period (ca. 300 b.c.). See figure 11.
 Throughout the history of mathematics, a
 variety of such dissection proofs have been
 offered to affirm the proposition that given
 a right triangle whose legs have measures
 of length a units and b units, respectively,
 and whose hypotenuse has a measure of
 length c units then a2 + b2 = c2 (Loomis
 1968). Over the years people with many
 backgrounds and interests shared a
 common obsession in seeking a solution to
 the Pythagorean theorem.
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 (a) Square of area c2 composed of four right trian- (b) Pieces rearranged, thusc2 = a2 +b2.
 gles whose legs measure a and b units, hypotenuse c
 units, plus a small square in the center

 Fig. 11
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 Illustrating the Growth and
 Evolution of Mathematical Ideas

 The history of mathematics spans time in
 testifying to the similarity of human math
 ematical concerns and experiences, but it
 also transcends cultures and affirms the
 global nature of mathematical awareness
 and involvement. Frequently; the same
 mathematical situation can be examined in
 different time periods and cultural milieus
 through the use of extant problems.

 When a ladder 25 feet long rests against the
 vertical wall of a building, its top is 17 feet far
 ther from the base of the building than its foot.
 How high on the wall does the ladder reach?
 (Dolciani 1970)

 A spear 20 feet long leans against a tower. If its
 end is moved out 1 2 feet, how far up the tower
 does the spear reach ? (Italy, 1 300 a.d. )

 The height of a wall is 10 feet. A pole of un
 known length leans against the wall so that its
 top is even with the top of the wall. If the
 bottom of the pole is moved 1 foot farther from
 the wall, the pole will fall to the ground. What is
 the height of the pole? (China, 300 b.c.)

 A beam of length 30 feet stands against a wall.
 The upper end has slipped down a distance 6
 feet. How far did the lower end move? (Baby
 lonia, 1600-1800 b.c.)

 It is interesting to note that as we progress
 back almost 4000 years through this se
 quence of right-triangle problems, their
 conceptual content does not become easier;
 in fact, it becomes more complex.

 When Newton said that he could devise
 calculus because he "stood on the backs of
 giants," he was acknowledging the fact that
 mathematical discoveries are usually grad
 ual in coming and are assisted in their birth
 by the efforts of many men and women
 working over a long period of time. The
 gradualness of this process should be made
 evident to students. For example, the
 phrase "Cartesian coordinates" would
 seem to credit the popularization of the use
 of rectangular coordinates to the
 seventeenth-century French mathematician
 and philosopher Ren? Descartes. Was De
 scartes the originator of such an idea? No,

 it does not seem so, for systems of rectangu
 lar coordinates were employed by Renais
 sance artists as a technical aid in achieving
 perspective in their paintings; by early
 Greek, Roman, and Chinese cartographers
 who used accurate rectangular grid systems
 in their map designs ; and by Egyptian tomb
 painters who as early as the XVIII dynasty
 (1552-1306 b.c.) constructed graphical grids
 to assist in the transfer of sketches from
 their working tablets to tomb walls. See
 figure 12.

 Time and time again in the history of
 mathematics, a similar scenario unfolds, a
 scenario that shows how mathematics
 evolved as a science: a mathematical idea
 or concept is pursued and studied for its
 utilitarian or sociological significance, but
 gradually its considerations become ab
 stract and divorced from empirical reality.
 An example of this phenomenon is illus
 trated by the three classical problems of
 Greek antiquity :

 1. The duplication of the cube
 2. The trisection of an angle
 3. The quadrature of the circle

 Fig. 12. Grids help transfer sketches to tomb walls.
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 These problems were to be solved with the
 use of a straightedge and compass alone. It
 was over two thousand years before this
 feat was proved impossible, but yet, in the
 interim search for solutions, many useful
 mathematical discoveries were made, in
 cluding a theory of conic sections and the
 development of cubic, quadratic, and trans
 cendental curves. Out of this particular
 legacy emerged a series of geometric prob
 lems that can challenge and fascinate

 modern students. In the sear?h to achieve a
 quadrature of the circle, a theory of lunes
 developed and problems like those that
 follow resulted.

 c

 Given a semicircle with diameter AB, arc
 ADB> is inscribed in the semicircle. The
 region bounded between the semicircle
 and the arc is called a lune. Show that the
 area of the \uneACBD is equal to the area
 of the inscribed triangle ACB where AC ^
 CB.

 Problems become more complex and fur
 ther removed from reality, as shown by a
 consideration of the arbelos and its proper
 ties (Raphael 1973):

 Let A, C, and be three points on a
 straight line. Construct semicircles on the
 same side of the line with AB, AC, and CB
 as diameters. The region bounded by these

 three semicircles is called an arbelos. At C
 construct a perpendicular line XoAB inter
 secting the largest semicircle at point G.
 Show that the area of the circle construc
 ted with CG as a diameter equals the area
 of the arbelos.

 Given an arbelos packed with circles Clt
 C2, C3.as indicated, show that the
 perpendicular distance from the center of
 the/7th circle to the WneACB is a? times the
 diameter of the nth circle.

 In tracing the cultural, temporal, and in
 tellectual migration of mathematical con
 cepts and techniques, it is important that
 the social, political, and economic forces
 that have influenced the growth of math
 ematics be recognized and acknowledged.
 Just why is it that the rise of deductive
 mathematics appeared in classical Greece?
 Why did the emergence of mercantile capi
 talism in fourteenth-century Italy spawn a
 mathematical Renaissance? How did the in
 vention of printing affect the growth and
 spread of mathematical ideas? Is a nation's
 mathematical competency contingent on its
 wealth? Does war change the nature of a
 country's mathematical activity? It is from
 the contemplation of such questions and
 their answers that the dynamic inter
 relationship of mathematics and society
 emerges.

 Conclusion
 A recognition of the pedagogical impor
 tance of the history of science and math
 ematics in teaching is certainly not new.
 George Sarton, the noted historian of sci
 ence, frequently pleaded this cause. In ad
 dressing a general audience in 1953, Sarton
 delivered a message that is quite appropri
 ate today:
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 I said that if you do not love and know science, one
 cannot expect you to be interested in its history; on
 the other hand, the teaching of the humanities of sci
 ence would create the love of science as well as a
 deeper understanding of it. Too many of our scientists
 (even the most distinguished ones) are technicians and
 nothing more. Our aim is to humanize science, and the
 best way of doing that is to tell and discuss the history
 of science. If we succeed, men of science will cease to
 be mere technicians, and will become educated men
 (Sarton 1958).

 Unfortunately, in recent years the history
 of mathematics has been experiencing ne
 glect. Around the turn of the century, the
 importance of the history of mathematics in
 relation to the teaching of mathematics was
 widely recognized and promoted. Almost all
 universities and teacher-training colleges
 offered studies in the subject, but gradually
 its status diminished as mathematical con
 tent, itself, became the sole focus of math
 ematics teaching. A survey of the offerings
 of American colleges and universities in
 1980-81 revealed that only 30 percent of
 fered a course on the history of mathemat
 ics (ISGHPM 1982). In light of this re
 velation, it is rather ironic to note that
 during this same period many professional
 schools (law, medicine, architecture, and so
 on) are requiring their graduates to take
 courses in the history of their discipline.
 This rather recent curriculum innovation is
 intended to refocus attention and concern
 on the people-centered origins and appli
 cations of the disciplines in question. Per
 haps it is also time to attempt such a reori
 entation in our teaching of mathematics.
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 An Astounding Revelation on
 the History of
 (Continued from page 52)

 The Gaon of Vilna then found the ratio of
 these two values :

 111
 -= 1.0472

 106

 (to four decimal places), which he con
 sidered the necessary correction factor.

 When he multiplied this value by 3 (the pre
 viously thought-to-be value of in the
 Bible), he obtained 3 1.0472 = 3.1416, the
 value of correct to four decimal places !

 This interpretation should then correct
 the notion that the Bible had only a very
 crude approximation of . Mathematics his
 torians, take note ! w

 Seeking Relevance?
 Try the History of Mathematics
 (Continued from page 62)

 Swetz, Frank J., and T. I. Kao. Was Pythagoras
 Chinese? An Examination of Right Triangle Theory
 in Ancient China. University Park, Pa.: Pennsylva
 nia State, University Press; Reston, Va.: National
 Council of Teachers of Mathematics, 1977.

 Zaslavsky, Claudia. Africa Counts: Number and Pat
 tern in African Culture. Boston: Prindle, Weber &
 Schmidt, 1973. V

 Answers for "Problems of the Month"
 on page 37

 1. Let / be the number of strides made by the father
 and s be the number of strides by the son after the
 head start. From the information given in the problem,

 ? f

 (1) s = \f.
 Let D be the distance in each of dad's strides and d be
 the distance in each of the son's strides. From the in
 formation given in the problem,

 3D = Id,
 or

 (2) Ds=ld'
 Now, f-D is the distance father goes, s d is the dis
 tance son goes after father starts running, and 60 ? d is
 the distance in son's head start. From the problem,

 (3) fD-sd = 60d.
 Substitution of (1) and (2) into (3) gives an equation
 reducible to one variable, from whence f =12 and
 s = 108. The father makes 72 strides, and the son
 makes 108 strides.

 2. We can set up a system of equations based on
 the fact that

 production cost rate profit = selling price.
 In this problem, production cost must be refined to a
 product of cost per unit number units (the unit
 being cubic inches in this problem). Thus, our equa
 tion before the hollowing out is as follows :

 cost per unit units rate profit = selling price ;

 C = U 6

 In this equation, /6 equals the volume of a solid gum
 ball of diameter one inch.

 Letting r be the radius of a concentric sphere that
 is removed from the gumball, producing the shell, we
 obtain our second equation :

 n? , ,? 4 3 8Cx|,- ?  = 2

 (Remember, an increase of 700 percent is an eightfold
 increase !) Seeing from the first equation that the prod
 uct P-C = 6/ , we can substitute this value into the
 second equation to obtain the following:

 48 I 48 4 3"

 |_6 3~~
 = 20

 From this equation, it follows algebraically that r =
 The thickness of the shell, therefore, is the original radius of
 one-half inch, less this value, which is

 2-^6
 4 '

 This result rounds off to a value of approximately
 0.0457 inches thick, which would give a sensation simi
 lar to biting into a balloon ! I was more concerned with
 finding numbers that worked out reasonably well than
 with realism_

 3. -17 or 3
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