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ow big is the earth? How far away 
is the moon? How big is the moon? 
How tall are the mountains on the 
moon? These wonderfully naïve ques-
tions have been asked for centuries by 

children and astronomers alike. A great bonus for 
mathematics and science teachers is that with basic 
concepts from the high school curriculum and data 
that students can collect themselves, these questions 
can be answered to a high degree of accuracy.

BACKGROUND
Eratosthenes (276–194 BC), born in present-day 
Libya and educated in Athens, became head librar-
ian at Alexandria in 240 BC. Also around that time, 
using basic geometry and right angle trigonometry, 
he made a surprisingly accurate measurement 
of the circumference of the earth, the equivalent 
of 39,300 km—only 1.8 percent below today’s 
accepted value of 40,027 km at the equator (Dun-
ham 1990; O’Connor and Robertson 1999). 

Eratosthenes knew that the sun is so far away that 
its rays arriving at Earth are nearly parallel (fig. 1). 
This realization allowed him to use the Euclidean 
theorem that when parallel lines are cut by a trans-
versal, alternate interior angles are equal. He also 
knew that a pole in the city of Syene, located on the 
Tropic of Cancer in southern Egypt about 800 km 
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south of Alexandria, casts no shadow on the day of 
the summer solstice. Legend has it that he hired pro-
fessional pacers to step off an accurate distance from 
Alexandria to Syene (Sagan 1980, pp. 14–17). By 
knowing angle A and distance B in figure 1, Eratos-
thenes was able to show that the circumference of the 
earth was about fifty times greater than distance B.

OVERVIEW OF OUR PROJECT
In our project, we modified Eratosthenes’s method 
(figs. 1 and 2) and extended it to determine other 
lunar measures, including the altitude of Mount 
Piton (pronounced pee-´tahn). 

We began by measuring the shadow cast by a 
parking lot light pole of known height at local noon 
on the day of the autumnal equinox, usually about 
September 21 (see fig. 3). (The vernal equinox, 
usually about March 21, would work equally well.) 
Eratosthenes used the summer solstice day; we 
modified his procedure in this way because school 
is often not in session on either summer or winter 
solstices. For further details on how to conduct this 
measurement with your students, consult William 
Dunham’s Journey through Genius or the American 
Physical Society Web site, or contact us through 
www.frontieracademy.net.

The success of this initial experiment motivated 
us to extend the inquiry further and reproduce 
other ancient measurements:

•	 the distance to the moon by Ptolemy’s parallax 
technique

•	 the diameter of the moon by means of circular 
ratios

•	 the altitude of Mount Piton, a spike-shaped peak 
on the moon, by using similar triangles

We accomplished the whole suite of activities over 
the course of a few weeks. Our equipment included 
nothing more than metersticks, a pole of known 
length, calculators, a sextant, and a photograph of 
the moon depicting the full length of the shadow of 
Mount Piton as near as possible to the terminator, 
the line separating day and night hemispheres of the 
moon. Sextants capable of making the measurements 
described here and to the required degree of preci-
sion are available from boating supply catalogs for as 
little as $50.00. If sextants or telescopes with a reticle 
(a scale etched on the surface of the ocular lens to 
measure angular size of objects) are not available in 
the classroom, students may instead use their data 
from the determination of the earth’s circumference 
together with data tabulated in reference books to 
determine the moon’s distance and diameter. Jay M. 
Pasachoff’s book Stars and Planets is an excellent 
source for this information. The students’ first result, 
the diameter of the earth, can be used through each 

of the next three activities, giving students a sense of 
ownership over the entire process.

MEASURING THE DISTANCE TO THE MOON 
BY PARALLAX
Since C = pd, knowing the circumference of the 
earth leads immediately to the determination of its 
diameter. Knowing Earth’s diameter allows us to use 
Ptolemy’s parallax technique to determine the dis-
tance to the moon. Parallax is the apparent shift in 
position of an object, with respect to the background, 
when viewed from two different locations (see fig. 
4). The result from the previous experiment, the size 
of the earth, is combined with a new measurement, 
the parallax of the moon over the course of a night, 

Fig. 1  If angle A and distance B are known, the circumference of the earth can be 

determined.
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Fig. 3  Students prepare to measure lamppost shadows on the morning of the 

autumnal equinox. Photographs by Jocelyne M. Comstock; All rights reserved
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by measuring the angular displacement between the 
moon and a fixed star over the span of several hours.

Principles
When the moon is observed throughout the 
night, its position relative to the background stars 
changes. The angular displacement is about one 
Moon diameter per hour (fig. 4).

The amount of the moon’s angular displacement 
is attributed to two factors: (1) the moon’s own 
motion as it orbits around the earth and (2) the 
parallax caused by seeing the moon from two differ-
ent locations in space. For example, the full moon 
observed at sunrise is seen from a position one 
Earth diameter (about 12,900 km) farther east than 
where it was seen the previous night at sunset.

Technique
Though students could certainly perform the nec-
essary measurements, doing so requires that they 
observe the angle between the moon and a star 
over the course of several hours on a clear night. In 
the most simplified scenario, parallax is measured 
between the moon and a star as they pass through 
the observer’s zenith. (Interested readers may want 
to explore the mathematics of the more common 
situation in which the moon and star do not pass 
directly overhead.) The equipment required includes 
either a sextant or a homemade astrolabe. Our stu-
dents practiced making this measurement outdoors 
during the day when the moon is visible (see fig. 
5). The required data for our example assumes the 
parallax angle is measured over the course of six or 
more hours as the moon passes through the zenith.

Because taking nighttime measurements of the 
moon and stars is not generally practical in the school-
day setting, we instead provide students with data 
from Abell (1975, p. 389; see fig. 6) and conduct a 
discussion of the required nightlong measurements 
and subsequent calculations in the classroom. The 
Starpath School of Navigation (Burch 2003; see 
also www.starpath.com) will serve as an excellent 
resource if teachers want to give advanced students 

Fig. 4  The moon’s apparent angular displacement with respect 

to a star (parallax) over the course of a night (6.2 hours)
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Fig. 5  Students practice with a sextant to discover how 

measurements of the angular size of the moon and the 

parallax angle of the moon are made.
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total angular displacement was about 205', or close to 3.4 degrees.

In an almanac we found that the moon requires 27.3 days to orbit 
the earth. We calculated the fraction of angular displacement due to 
the moon’s own motion as follows.

360° per orbit ÷ 27.3 days/orbit ≈ 13.2°/day
13.2°/day ÷ 24 hr/day ≈ 0.55°/hr ≈ 33'/hr

(Note: Be sure to use the orbital period of the moon rather than the full-
moon-to-full-moon cycle, which is 29.5 days. The earth advances in orbit 
during the 27.3 days, and an extra 2.2 days are required for the moon to 
get back to the point where it can reflect sunlight back to Earth.)

In the 6.2-hr observation, the moon’s angular displacement due to 
its own motion is

6.2 hr  × 33'/hr ≈ 205'

As measured directly by a sextant, the change in the angle between the 
moon and the reference star over 6.2 hours of observation was 148'. 
The difference is 205' − 148' = 57' = 0.95°. This number represents 
our best approximation of the parallax angle of the moon, ∠EBM.
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the opportunity to stay up late and make the measure-
ments using a sextant. These students may then use 
their own data in the calculations that follow, which 
is in many ways a much more satisfying experience.

We encourage mathematics teachers to collabo-
rate with science department faculty at their school 
to give this problem to ambitious students as an 
additional challenge. We welcome suggestions from 
readers about how to approach this problem. Hirsh-
feld (2004) provides an excellent discussion of Aris-
tarchus’s technique for determining lunar distances, 
which teachers can also try with their students.

Results
The result for the distance to the moon compares 
favorably with accepted values, which because of 
the eccentricity of the moon’s orbit vary between 
406,610 km at apogee and 356,334 km at perigee, 
with a mean distance of 384,404 km (Abell 1975, p. 
155; Pasachoff 2000, p. 535).

THE SIZE OF THE MOON
Principle
The goal of the next problem is to find the diameter 
of the moon. Buoyed by their success in determin-
ing the moon’s distance from Earth, students can 
tackle this problem by the relatively straightfor-
ward technique of circular ratios. The critical data 
in this experiment is the angle subtended by the 
moon. A necessary prerequisite is the Earth-Moon 
distance, which was determined previously.

The basic principle is that the moon sweeps out 
an approximately circular orbit around the earth. In 
its path, the moon occupies a fraction of this orbit. 
Thus, the angular size of the moon, as measured 

from Earth, represents a fraction of the essentially 
circular orbit (fig. 7). So the following ratio can be 
used to determine AB, the diameter of the moon:
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Technique
The angular size of the moon may be measured 
with a sextant or even the reticle on a telescope. 
Ptolemy measured the angular size of the moon to 
a great degree of accuracy using the dioptra, obtain-
ing a value of 31 1/3 ft. (Ptolemy 1952, pp. 143–88). 
In his Commentary on book 5 of Ptolemy’s The 
Almagest, Pappus describes the dioptra (see fig. 8). 
Some students may want to build this device them-
selves, although this step is not necessary: Our stu-
dents obtained similar results using a sextant. They 
are shown using a sextant in exactly this manner in 
figure 5. Figure 9 describes how the sextant can be 
used to obtain the angular size of the moon.

Results
Since students may not have access to such instru-
ments or be skilled in their use, our example uses 
data taken from Abell (1975, pp. 154–55). He gives a 
mean value of 31.083 feet for the angular size of the 
moon. This value will vary because of the elliptical 
shape of the moon’s orbit around the earth. Substi-
tuting appropriate values and using 31 ft. ≈ 0.52° 
and r = 383,000 km, our previous result, yields a 
value of 3,480 km, within a close margin of error to 
the accepted value of 3,476 km (Abell 1975, p. 154).

THE ALTITUDE OF MOUNT PITON
Principle
The grand finale is to determine the height of the 
moon’s Mount Piton. This can be accomplished 
using a photograph of the moon (fig. 10), which 
is available at nominal cost from Lick Observatory 
at the University of California, www.ucolick.org/ 

Fig. 7  The angular size of the moon represents a fraction 

of its complete orbit. Thus, the diameter AB of the moon 

may be found.
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publications/. The underlying mathematical prin-
ciple involves similar triangles. In order to establish 
a set of similar triangles, the photograph must show 
the moon’s phase at first or third quarter, when 
the Earth-Moon-Sun system forms a right triangle. 
Galileo is credited with having first developed this 
technique (Galileo, trans. Van Helden, 1989, pp. 
42–53), which involves some clever imagination to 
obtain the required similar triangles (Holton et al. 
1975, unit 2, “Motion in the Heavens,” pp. 8–14).

Figure 11a depicts a mountain near the moon’s 
terminator as it appears from an earthbound 
observer’s line of sight. Figure 11b depicts the 
same situation, except the observer’s viewpoint has 
been rotated 90° with respect to the moon’s termi-

nator. Now the pair of similar triangles becomes 
apparent (see fig. 11) (Abell 1975, p. 301). It must 
be noted that length AB as measured on the pho-
tograph is actually a curve that follows the surface 
of the moon. Nevertheless, because the distance is 
short compared with the radius of the moon, only 
a negligible error is introduced by assuming this 
length is the same as AB in the right triangle ABM.

Technique
Students may measure lengths on a photograph (fig. 
10) of the moon to obtain the ratios for the similar 
triangles described above. Mount Piton is a promi-
nent peak, near the terminator, about one-fourth the 
distance from the lower edge or limb. We have found 
that taking measurements is easier if using a trans-
parency of this photograph projected onto a screen. 
In the previous activity, students determined the 
moon’s diameter, 2 • OB = 3480 km. The diameter of 
the moon on the photograph is about 177 mm. Thus, 
the scaling factor between photograph and actual 
distances on the moon is 1 mm ≈ 20 km. These val-
ues depend on the size of the image used.

Results
Using a photograph like the one in figure 10, stu-
dents might obtain the following values: BT' = 6.0 
mm, AB = 2.0 mm, and OB = 88.5 mm. By substi-
tuting these values they obtain

AB
r

BM

2 360

2 0
88 5

0 14

π
θ

=

= ≈

o

( .
.

.
 mm)(6.0 mm)

 mm
 mmm.

 mm
20 km
1 mm

 km0 14 2 8. .






≈

∠A= tan
le–1 nngthofshadow

heightoflamppost







MB

AB

BBM

Multiplying by the scaling factor,
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for the actual altitude of Mount Piton. The accepted 
value, using more sophisticated techniques, is 2.3 
km (Holton et al. 1975, unit 2, p. 14).

We celebrate such findings with our students. 
Although this calculation yields a result that dif-
fers from the accepted value by about 22 percent, it 
conveys the idea that a measurement-based value 
for the altitude of mountains on the moon can be 
obtained. In addition, a discussion of the sources 
of error is a rich activity. In determining the alti-
tude of Mount Piton, students had to estimate the 
location of the terminator on the photograph. The 
resolution of the picture influenced this decision. 
Measuring the diameter of the moon, and especially 
the distance of the base of the mountain to the ter-
minator and the length of the mountain’s shadow, 
involved estimation that naturally brings error with 
it. Finally, the technique itself works best if the 
mountain of interest is very near the terminator.Fig. 11  nABM and nBT’O are similar, which allows height of BM to be found.

(a) (b)

Terminator Terminator

T, T'

T'

A B

M

M
AT

O

B

A. From the observer’s line 
of sight, the mountain MB 
casts an appreciable shadow 
AB near the terminator.

B. The perspective in A., 
rotated by 90°.

Fig. 10  The moon at first quarter. Mount Piton is circled 

near the bottom of the photograph. 
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CONCLUSION
In this age of Global Positioning System devices and 
other black box technologies, students often take for 
granted information printed in books, such as the alti-
tude of mountains on the moon, which they can dis-
cover themselves. We have found the preceding series 
of activities appealing from several other perspectives:

1.	 These four activities allow students to reflect 
upon the accomplishments of the ancients, who 
were capable of sophisticated astronomy.

2.	 The measurements and calculations involved 
provide a meaningful context for high school 
geometry and trigonometry.

3.	 The lives of famous astronomers such as Eratos-
thenes, Aristarchus, Ptolemy, and Galileo and 
the historical contexts in which they lived can 
add greatly to classroom discussions held while 
these experiments are performed.

4.	 These activities might also be used to complement 
those described by Kurt J. Rosenkrantz in the Sep-
tember 2004 issue of the Mathematics Teacher.

5.	 These activities demonstrate the transitive, 
mathematical logic behind much of scientific 
knowledge. The first measurement, together 
with an assumption of the earth’s sphericity, 
served as the basis for the determination of the 
moon’s distance. In turn, the moon’s distance 
was a prerequisite to determining its absolute 
size. Finally, the diameter of the moon was nec-
essary in calculating the altitude of Mount Piton.

The authors of the astronomy text we use at 
Frontier Academy add another powerful perspective 
to the value of these activities when they summarize 
the use of techniques such as parallax. “Although the 
observations are straightforward and the geometrical 
reasoning elementary, simple measurements such as 
these form the basis for almost every statement made 
in this book about the size and scale of the universe” 
(Chaisson and McMillan 2004, p. 13).
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