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n her article “The Changing Concept of Change:
The Derivative from Fermat to Weierstrass,”
Grabiner (1983) notes the following:

Historically speaking, there were four steps in the
development of today’s concept of the derivative, which I
list here in chronological order. The derivative was first
used; it was then discovered; it was then explored and
developed; and it was finally defined. That is, examples of
what we now recognize as derivatives first were used on
an ad hoc basis in solving particular problems; then the
general concept lying behind these uses was identified (as
part of the invention of calculus); then many properties of
the derivative were explained and developed in applica-
tions to mathematics and to physics; and finally, a rigor-
ous definition was given and the concept of derivative
was embedded in a rigorous theory.

As Grabiner observes, the historical order of the
development of the derivative is exactly the reverse
of the usual order of textbook exposition, which
tends to be formally deductive rather than intuitive
and inductive. Grabiner’s article contains a number
of other well-articulated historical and pedagogical
messages, and I strongly encourage every mathe-
matics instructor to read it in its entirety. However,
this article emphasizes only her use-discover-
explore/develop-define (UDED) paradigm to
describe the derivative’s evolution. This model is
extremely useful for constructing accounts of the
evolution of numerous mathematical concepts and
theories in addition to the derivative. In various
courses that I teach, I often ask my students to use
UDED to compile their own accounts of the evolu-
tion of mathematical entities. Occasionally, I have
also required students to report their findings to the
class, but the final, structured account is usually
intended for the individual student’s benefit alone.

Such assignments have many advantages. By
encouraging my students to refer to such reputable
histories of mathematics as those cited in the bibli-
ography in constructing their accounts, I intro-
duce them to the history of mathematics in a man-
ner that is not overwhelming. This same exercise
helps students understand that becausewmost his-
torical accounts are somewhat subjective, students
need to justify their historical claims by citing reli-
able sources. For example, by using the UDED par-
adigm, students can learn to appreciate the basis

that an author uses to assert that Isaac Newton
and G. W. Leibniz invented calculus, that Girolamo
Cardano was the first to solve the general cubic
equation, that Carl F. Gauss, Janos Bolyai, and
Nikolai Lobachevsky invented non-Euclidean
(hyperbolic) geometry, and the like. Furthermore,
as Grabiner observes, students learn that creating
mathematics is often incremental, inductive, and
exciting and that our modern versions of mathe-
matical theories are polished diamonds that started
off as rough pieces of carbon.

When I heard a colleague in the physics depart-
ment describe the scientific method as “the develop-
ment of knowledge from observation of specifics to
conjecture to experiment to theory,” it dawned on
me that the UDED paradigm is essentially nothing
more than using the scientific, or experimental,
method to describe how mathematical theories and
concepts evolve. Fuzzy foreshadowings, false starts,
and dead ends have occurred in developing scientif-
ic models before such modern theories as those of
the atom, light, heat, electricity, evolution, and the
cosmos have crystallized and have been accepted as
legitimate scientific theories. Students need to see
this connection of shared modi operandi in the evolu-
tion of both mathematics and the natural sciences.

The accounts that teachers and students write
using UDED can be detailed, brief, or anywhere in
between. At times, the “big picture” is precisely
what students should absorb; at other times, a
mini-term paper might be appropriate. In assign-
ing the UDED account as a student project, the
instructor can easily set the parameters for the
UDED project.

One of my favorite abridged applications of the
UDED model is using it to construct a brief chronicle
of the acceptance of the principle of mathematical
induction as a valid method of proof in mathematics.
In the sixth century B.C.E., the Pythagoreans cer-
tainly used the ideas underlying this principle when,
proceeding geometrically, they conjectured and
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accepted as “true” such number-theoretic patterns
as theorem S, which states that the sum of the first
n odd integers is equal to the nth square number
(Burton 1999, pp. 91-93). Francesco Maurolico gave
the first formal inductive proof in the history of
mathematics when he proved theorem S by induc-
tion; his proof (discovery) can be found in his work
Arithmeticorum Libri Duo, published in 1575, the
year of his death (Burton 1999, p. 426). In the next
century, Blaise Pascal explored and developed the
technique of mathematical induction in connection
with his work on the arithmetic triangle and its
applications (Burton 1999, pp. 418-28). Although
John Wallis and Augustus De Morgan helped name
this procedure induction, only in the latter part of
the nineteenth century did Richard Dedekind—and
then Gottlob Frege and Giuseppe Peano—define it
mathematically. When formulating their sets of cat-
egorical properties for the natural numbers, each
included the principle of mathematical induction or
one of its logical equivalents as an axiom (Katz
1998, pp. 735-37).

USING “UDED” TO DESCRIBE THE
EVOLUTION OF COMPLEX NUMBERS

The UDED model can also be used to describe the
evolution of the complex numbers, a more common-
place high school mathematical topic than induction.
Girolamo Cardano and other sixteenth-century
Italian algebraists reluctantly began to use complex
numbers when they saw that negative values
appearing under the radical sign in the Cardano-
Tartaglia formulas for solving specific cubic equa-
tions sometimes corresponded to recognizable real
roots and when Cardano attempted to solve the
problem of dividing 10 into two parts such that the
product is 40. In Ars Magna, his famous algebra text
of 1545, Cardano showed by “completing the
square” that the two parts must be 5 + V=15 and 5 -
V=15. Although he checked that these answers for-
mally satisfied the conditions of the problem, he
still regarded them as being “fictitious” and useless;
he was only halfheartedly using complex numbers.
A generation later, Raphael Bombelli discovered
the complex numbers in analyzing the “irreducible
case” of the cubic equation when all three roots are
real and nonzero and yet negative values always
appear under the radical when a Cardano-Tartaglia
type formula is used. When he published his trea-
tise Algebra in 1572, he became the first mathe-
matician bold enough to accept the existence of
“imaginary,” or complex, numbers and to present an
algebra for working with such numbers. He assumed
that they behaved like other numbers in calculation
and proceeded to manipulate them formally, with
V=@ «V-a = —a for @ > 0 being his key observation.
During the next three centuries, many mathe-
maticians explored and developed various aspects of
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the complex, that is, imaginary, numbers. For
example, in conjunction with their formative work
in analytic geometry, calculus, and algebra, such
mathematicians as René Descartes, Isaac Newton,
G. W. Leibniz, Leonhard Euler, Jean d’Alembert,
Carl F. Gauss, and Bernhard Riemann all
employed complex numbers in describing their the-
ories of equations, formulating the general loga-
rithmic and exponential functions, and devising
analytic tools for modeling and solving real-world
problems. Casper Wessel, Jean Argand, and Carl F.
Gauss contributed a crucial development to accept-
ing and understanding the nature of complex num-
bers when they began to represent them geometri-
cally in the real plane, much as we do today.

Finally, William Rowan Hamilton established
the theory of complex numbers on a firm mathe-
matical footing when he defined them in terms of
ordered pairs of real numbers in almost the same
way that modern textbooks define them. This defin-
ition and his rules for performing arithmetical cal-
culations with his ordered pairs can be found in his
1837 paper “The Theory of Conjugate Functions, or
Algebraic Couples; with a Preliminary and Elemen-
tary Essay on Algebra as the Science of Pure Time.”
Additional details concerning this UDED account of
the evolution of the complex numbers can be found
in Burton (1999) and Katz (1998).

“UDED” AND THE EVOLUTION OF
BRANCHES OF MATHEMATICS

The UDED paradigm can also be used to construct
brief accounts of the evolution of such entire
branches of mathematics as Euclidean geometry.
Most ancient peoples used formulas to calculate the
areas of simple rectilinear figures and to approxi-
mate the circumference and areas of circles. For
example, the early Egyptians, Babylonians, and
Chinese used algorithms to compute the volumes of
rectangular blocks, cylinders, and pyramids.
Furthermore, the latter two civilizations discovered
the general Pythagorean theorem and used it in
geometrical and astronomical applications. These
civilizations had no real notion of an axiomatic sys-
tem on which they could base “proofs” of their geo-
metric formulas and theorems. As most students do
today, they accepted their geometrical results on
the basis of diagrams and intuition and often did
not even distinguish between exact and approxi-
mate answers.

From the sixth century B.C.E. to the beginning of
the third century B.C.E., Thales, Pythagoras,
Eudoxus, Plato, Aristotle, and other Greek mathe-
maticians and philosophers shaped mathematics
into a deductive, axiomatic science and discovered
Euclidean geometry. Around 300 B.C.E., Euclid com-
piled their accumulated discoveries in geometry
and number theory and presented them axiomati-
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cally in his famous book, the Elements.

Over the next two millennia, Euclidean geometry
was explored and developed by mathematicians
from virtually every society that learned of the Ele-
ments. Such additional mathematical advances
occurred as Archimedes’ replacement of the Euclid-
ean theorem “The areas of circles are to one anoth-
er as the squares on their diameters” with a proof
of the precise Babylonian formula “The area of any
circle is equal to the area of a right triangle in
which one of the legs is equal to the radius and the
other to the circumference” (equivalent to the mod-
ern formula area = 7r%). However, the principal
explorations and developments did involve repeated
attempts to prove that Euclid’s fifth, or parallel,
postulate followed as a theorem from his other four
more self-evident postulates and his common
notions. The celebrated attempts of Proclus, ibn al-
Haytham, John Wallis, Girolamo Saccheri, Adrien-
Marie Legendre, Johann Lambert, and untold oth-
ers were doomed to failure because—as we now
know from the work of Janos Bolyai, Carl F. Gauss,
and Nikolai Lobachevsky in the early nineteenth
century—Euclid was indeed on sound logical
ground when he made his parallel postulate an
axiom for his geometry. It is logically independent
of his other four.

Finally, at the very end of the nineteenth centu-
ry, David Hilbert completely and logically defined
Euclidean geometry in his classic monograph Foun-
dations of Geometry (1899). Hilbert began his treat-
ment of Euclidean geometry by postulating three
undefined terms (point, line, and plane) connected
by three undefined relations—incidence (on), order
(betweenness), and congruence. He then offered a
set of twenty-one axioms on which a logically con-
sistent and complete treatment of Euclidean geom-
etry could be based. In axiomatic studies of Euclid-
ean geometry today, authors often distill Hilbert’s
collection of twenty-one axioms down to a set of fif-
teen logically independent axioms by combining
related ones and deleting those that are implied by
the others.

The principal pedagogical message here is that
anyone purporting to offer high school geometry
students a complete, deductive study of Euclidean
geometry will fail. NCTM’s curricular standards
and recommendations indicate that a school geome-
try course should emphasize discovery, applica-
tions, and a representative sample of truly accessi-
ble proofs of such theorems as the Pythagorean
theorem. Additional details concerning this UDED
account of the evolution of Euclidean geometry can
be found in Burton (1999) and Katz (1998).

CONCLUSION

Topics in addition to those already noted to which
the UDED paradigm can be applied without unduly

forcing the issue include the evolution of the con-
cept and theory of a function, limit, infinite series,
the integral, the number zero, negative numbers,
real numbers, the theory of equations, and numeri-
cal procedures. It can be applied to describing the
evolution of such entire branches of mathematics as
non-Euclidean geometry, analytical geometry, and
algebra (both manipulative and structural); such
subareas of modern algebra as group theory; and
trigonometry.

I encourage classroom teachers of mathematics
to use Grabiner’s generic paradigm both as a tool
for their own acquisition of authentic historical
accounts of the evolution of mathematical topics
and as a pedagogical stratagem for their students
to do the same.
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