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THE “PILING UP OF SQUARES”

IN ANCIENT CHINA

About the same time Euclid was compiling the Elements,
on the other side of the globe the brilliant work of Chinese

scholars was being collected in an ancient text. The solution technique illustrated
here, which was developed to a high art in China, should intrigue you and your students.

By FRANK SWETZ

The Pennsylvania State University
Middletown, PA 17057

THE merits of a mathematics-laboratory
approach to problem-solving activities
have been widely acclaimed. Indeed, most
teachers will readily acknowledge that lab-
oratory learning situations sharpen the ap-
peal to intuition and provide multifaceted
learning interactions for the student. It is
interesting to note that this modern teach-
ing strategy often employs problem situa-
tions and learning devices that are quite
historical in their origins. Napier's rods,
magic squares, tangrams, the abacus, and
the Tower of Hanoi all possess a historical
significance that, if known, would enhance
their teaching potential. A knowledge of
historical origins can aid a teacher in devis-
ing a learning task or preparing a teaching
strategy, as well as developing students’ ap-
preciation for the evolutionary nature of
mathematics. The Thirty-first Yearbook of
the National Council of Teachers of Math-
ematics, Historical Topics for the Math-
ematics Classroom (1969), is particularly
helpful.

Of the five mathematics-laboratory de-
vices mentioned, three had their historical
origins in the Orient, and of tHése, two—
magic squares and tangrams—had their be-
ginnings in China. Yet it is only recently
that Western scholars have begun to accord
the development of mathematics in China
its due attention. Although a variety of
mathematical puzzles are ascribed to the
Chinese, little acknowledgment has been
made of their more noteworthy accom-

plishments, which include an early famil-
iarity with the use of the Pythagorean theo-
rem; the most accurate approximation for
m obtained in the ancient world,
3.1415929293 (Needham 1959, p. 101); an
accurate root-extraction process preceding
Horner’s method by six hundred years
(Needham and Wang 1955): and the use of
the Pascal triangle for finding coefficients
for a binomial expansion three hundred
years before Pascal conceived of it (Needham
1959, p. 47). A testimony to the mathemati-
cal ability of the early Chinese scholars is
provided by the contents of the Chiu-chang
suan-shu [Nine chapters on the mathemati-
cal art]. The Chiu-chang is a manual of
utilitarian mathematics compiled during
the early Han period (ca. 300 B.C.-A.D.
300) and has been describéd as the most
influential of all ancient Chinese texts
(Swetz 1972). Although several parts of this
book have been translated into English, a
completed translation remains to be under-
taken.* In studying the contents and meth-
ods of the Chiu-chang, modern scholars
have been intrigued by the depth and re-
sourcefulness of the early Chinese methods

* Severul problems of the Chiu-chang have been translated
in Yoshio Mikami's Development of Mathematics in China and
Japan (New York: Chelsea Publishing Co., 1913 and in Lam
Lay Yong's “Yang Hui’s Commentary on the Ying-nu of the
Chiu chang suan shu™ (Historia Mathematica, February 1974,
pp- 47-64). A complete translation of the ninth chapter has
been done by Frank Swetz and T. 1. Kao in “Right Triangle
Computational Techniques of Early China as Revealed by the
Kou-ku of the Chiu Chang Suan Shu™ (unpublished manu-
script, Harrisburg, Pa., 1973). Translations of the complete
work are available in Russiun (E. I. Berezkina,
“Drevnekitajsky Traktut Matematika v devjati Knigach,” Is-
loriko-matematiceskie issledovaniya 10[1957):423-584) and in
German (Kurt Vogel, Chiu Chang Suan Shu: Neun Bucher
Arithmetischer  Technik [Brunswick, Germany:  Friedrick
Vieweg & Sohn, 1968]),
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of solution. These methods are empirically
based and can easily lend themselves to a
mathematics laboratory.

It is the object of this paper to examine
one algebraic-geometric solution technique
employed in the Chiu-chang—a solution
technique used in ancient Greece and Baby-
lon but developed to a high art in China.
The technique called chi-chii, or the *piling
up of squares,” employs an intuitive geo-
metric approach to solve algebraic prob-
lems. Such techniques were the forerunner
of algebraic computation. A knowledge of
this method can provide insights into the
development of algebra as well as become a
source for classroom activities.

The “Piling Up of Squares”

*Kou-ku™ [right triangles] is the title of
the ninth chapter of the Chiu-chang. This
chapter presents twenty-four problems
whose solutions depend on a thorough un-
derstanding of the Pythagorean theorem
and the basic mathematical properties of
right triangles. Problem narratives proceed
from very elementary to rather complex
and often picturesque situations. The solu-
tions of these problems are obtained by
employing one of two techniques, either
chi-chii or ch'ung-cha. The literal trans-
lation of ch'ung-cha connotes a use of pro-
portions equivalent to the tangent function
(Needham 1959, p. 109).

In the consideration of the actual “Kou-
ku" problems of the Chiu-chang, the origi-
nal Chinese format will be followed, which
includes, in respective order, a statement of
the problem: the answer; a brief description
of the solution method: and an ex-
planation, usually supplied by a later com-
mentator on the work. Whereas the first
three parts of each question will be directly
translated from the old Chinese in defer-
ence to the modern reading audience, the
explanation will be modified by the use of
contemporary algebraic symbolism and ad-
ditional diagrams. The presence of Chinese
characters will designate diagrams pre-
served from antiquity. In their illustrations
the Chinese frequently used 3, 4, 5 right
triangles, although the actual dimensions of

the problem under consideration are quite
different. The conjecture exists that early
number-theoretic investigations of the well-
known 3, 4, 5 triple resulted in the discov-
ery of the Pythagorean equation (Loomis
1968, pp. 3-4), though this is disputed
(Neugebauer 1969, p. 36). The apparent
inconsistency of using a 3, 4, 5 right triangle
is justified for its convenience of illustration
and didactical appeal. In Chinese the sides
of a right triangle are ku, the longer leg:
kou, the remaining leg: and shian, the hy-
potenuse. In my explanations, I shall repre-
sent these sides by k,, k,, and s, respec-
tively. The problem numbers indicate the
order in which the problems appear in
“Kou-ku."

Chinese units of linear measure em-
ployed in the problems include these:

| chang = 10 ch'ih

| pu(pace) 5 ch'ih
| ch'ih (foot) = 10ts'un (inch)

With this perspective established, let us ex-
amine some problems involving the *“piling
up of squares.™

(1) Given: kou = 3 ch'th, ku = 4 ch'th
What is the length of shian?

Answer: shian = 5 ch'ih

Method: Add the squares of kou and ku.
The square root of the sum is equal to
shian.

Explanation: See figure |.

Sz=(k|)a + (kz }2

Fig. |
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(6) Given: In the center of a square pond
whose side measures 10 ch’ih grows a cattail
whose top reaches | ch'ih above the water
level. If we pull the reed toward the bank,
its top becomes even with the water’s sur-
face. What is the depth of the pond and the
length of the plant?

Answer: The depth of the water is 12
ch’ih, and the length of the plant is 13 ch’ih.

Method: (See fig. 2.) Find the square of
half the pond’s width; from it subtract the
square of 1 ch'ih. The depth of the water
will be equal to the difference divided by
twice the height of the reed above water. To
find the length of the plant we add | ch’ik to
the result.

Explanation: 1t is known that the sum of
the squares erected on the legs of the right
triangle (see fig. 3) should equal the area of
the square erected on the hypotenuse, that

| 25

L__

S Adadte s

Fig. 3

is, (d + 1) = d* + 25. Manipulating the
resulting squares to perform the indicated
operations, we obtain the configuration
shown in figure 4. Since the shaded portion
of figure 4 is equal in area to d? the re-
maining two rectangles and square must be
equal in area to 25.

25 = 2d 1

T
|

d1 Ffﬂ\}

—
Fig. 4

If we subtract the square of 1 ch'ih as in-
structed, then the sum of the areas of the
remaining two rectangles are equal to 24,
that is, 2d = 24. The area of one rectangle,
d, will then correspond to the depth of the
water, 12 ch'ih. To obtain the total length
of the reed, I, we add the depth of the
water, 12 ch'ih, to the length of the reed
extending above the surface 1 ch'ih and ob-
tain the desired result, 13 ch'ih.

A more poetic rendering of this problem
is found in the later writing of the Indian
mathematician Bhaskara (1114-ca. 1185):
In a certain lake, swarming with red geese, the tip of a
bud of a lotus was seen a span (9 inches) above the
surface of the water. Forced by the wind, it gradually
advanced and was submerged at a distance of two
cubits (approximately 40 inches). Compute quickly,
mathematician, the depth of the pond. [Collidge 1940,
p. 17]

The similarity of these two problems,
even to the ratio of the distances involved,
is striking. Such replication gives rise to a
controversy concerning the influences of
early Chinese mathematics on later Hindu
writings (Needham 1959, pp. 146-50).

(11) Given: The height of a door is 6 ch’ih
8 ts'un larger than the width. The diagonal
15 10 ch’ih. What are the dimensions of the
door?
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Answer: width = 2 ch'ih 8 ts'un
height =9 ch'th 6 ts'un
Method: (See fig. 5.) From the square of
10 ch'ih subtract twice the square of half of
6 ch'ih 8 ts'un. Take half of this result and
obtain its square root. The width of the
door is equal to the difference of this root
and half of 6 ch'ih 8 ts'un, and the height of
the door is equal to the sum of the root and
half of 6 ch'ih 8 ts'un.

I

|
l =10 chh | Ki=ke+ 68 ch'ih
/ ‘

==

.//. l
e e =

«—k,—>

Fig. 5

Explanation: Using the original solution
diagram as given in figure 6, we can derive
the following equations:

(1) Gy + k3)* = 4k, + ko) + ke — k2)*s
(2) st = 20k, X ki) + (ki — ko),
which implies

2ky X ky) = 5 — (ky — k2)’;
(3) (ki + k2)* = 5° + 2(ky X ko).
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Fig. 6

Combining (2) and (3), we arrive at
@) ky + k)’ = 25" — (ky — ko).

The last equation supplies us with a
readily workable expression involving the
unknowns and the given,

ks = V25 — (k — k) .

ki + ks = V2(10)° — (6.8)°
= N§376

VvV 153.76 — 6.8

2

V153.76 +'6.8

2

Il

width = 2.8ch’ih

9.6 ch’ih

Il

height =

The diagram of figure 5 is known as the
Hsuan-thu and first appeared in the mathe-
matical classic Chou pei suan ching [The
arithmetical classic of the gnomon and the
circular paths of heaven]. It represents one
of the earliest known proofs of the Pytha-
gorean theorem. Admired for its simple ele-
gance, it also found its way into the work of
Bhaskara.

The Chinese ability to extract the square
root of 153.76 attests to their highly devel-
oped computational proficiency. In this
particular operation, the methods of the
Han mathematicians surpassed those of
other contemporary societies (Lam 1970).
(14) Given: Two men starting from the
same point begin walking in different direc-
tions. Their rates of travel are in the ratio
7:3. The slower walks toward the east. His
faster companion walks to the south 10 pu
and then turns toward the northeast and
proceeds until both men meet. How many
pu did each man walk? (See fig. 7.)

Answer: The fast traveler: 24} pu
The slow traveler: 10} pu

Method: (See fig. 8.) The circuit traveled
forms a right triangle. The three sides of the
triangle are in the ratio given by the follow-
ing magnitudes:

northeast route, (7 + 3*) = 2
(P + 3)
b

=

southward route, T

eastern route, 3 X 7
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Fig. 7

The distance traveled to the northeast is
then found to be

(PA Y, o @I
10 X 2 - 7 > 5
and to the east,
P L )
103 X7 +17 5
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Explanation: The area of rectangle

ABCD = (k, + s5)*. The area of rectangle
EFGH + area of rectangle BHKJ = (k,)*:
this follows, since the area of the square
FGKM = (s) and the area of the square
EBJM = (k;)*. The area of rectangle EFGH
is seen to equal the area of rectangle
JKLC: therefore, it can be seen that the

area of the square AHLD = (k; + s) + ki* =
(2s)(k; + s); and therefore one half the
area of the square AHLD = s(k, + s), which
supplies the term of the proportion relative

to s. Similarly, the (area of rectangle
EHLN) = (the area of the rectangle
BHLC)

(k2 + 8) — (k)
= 5" + (ko)) — (k)
(k)" + (k2)(s)

= ky(ks + 5),

which supplies a term for the proportion
relative to k,. The term for the proportion
relative to k, is found to be k,(k, + 5); thus

Replacing “k;”" by the distance traveled
southward, 10 pu, we obtain the distances
traveled in the other directions:

= 32? = 14 2 Pu3
eastward distance traversed (k,)
21 1
= lOzpu,

total distance covered by the faster man

1 1
142—242pu.

=10 4

(15) Given: (A right triangle with) kou = 5,
ku = 12. What is the largest square that
could be inscribed in the triangle?

Answer: A square with side 3 and 9/17
ch'ih

Method: The side of the square will be
given by the quotient of the product of 5
and 12 and the sum of 5 and 12.

Explanation: The product of ku (k,) and
kou (k;) is represented by the rectangle
ACKH in figure 9. For illustration purposes
the dimensions are changed to 12 and 6,
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respectively. From the diagram the
following relations are obvious:

area of triangle ABD

= area of triangle GKJ
area of square BCED

= area of square FGJH
area of triangle AGF

= area of triangle DEK
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Fig. 9

Now if the rectangle is dissected and the
pieces rearranged as indicated in figure 10,
it becomes obvious that the side of the de-
sired square is given by (ki) (ks) Although
kl + 2

the Han authors supply a proof for a par-
ticular case, with a little effort this method
can be altered to prove the general theorem
that the measure of the side of the square
inscribed in a right triangle is given by the
quotient of the product of the measure of
the legs of the triangle and the sum of the
measure of the legs of the triangle.

ku + kuo }r TN
B
1l
*
¥
T
8] ™ #
— \ AN |
side of |
—--‘ desired *——
square

Fig. 10

Given: (A right triangle with) kou 8 units
long and Aw 15 units. What is the largest
circle that can be inscribed in this triangle?

Answer: A circle with a diameter of six
units

Method: Find the length of shian from
kou and ku. The diameter will be the
quotient of twice the product of kou and ku
and the sum of kou, ku, and shian.

Explanation: From the diagram given in
figure 11, we can obtain the following infor-
mation: the area of triangle ACD equals the
sum of the areas of triangles AFO, AEO,
FCO, and GCO, and the area of the rec-
tangle EOGD. Since the area of triangle
ACD is also equal to &%@

2(ky)(kz) = 4 X area of triangle ACD
=4 X (area of triangle AFO +
area of triangle AEO) + 4 X
(area of triangle FCO + area of
triangle CGO) + 4 X (area of
triangle EOGD).

Brought to you by [ Communal Account ] | Authenticated cnoddin | DoMﬂgyéG&i’;B(/?J% :37 AM?JFC



\ §
\&M N C
D G
- — kz »
Fig. 11

This in turn equals 4 X (area of rectangle
AHOE) + 4 X (area of rectangle OJCG) +
4 X (area of rectangle EOGD) = 2 X
(radius) (k, + k., + s); therefore,

2k )ky) = 2 X (radius) X (k; + k; + 5),

or
! 2k, k
diameter = —12—.
ki + ks + s
Conclusions

The chi-chii method of solution is applied
to eleven of the twenty-four exercises in
“Kou-ku.” The traditional Chinese proof
of the Pythagorean theorem the Hsuan-thu
employed in obtaining a solution to prob-
lem 11 is admired by Coolidge in his history
of geometry for its simple elegance, as is
also the solution for the inscribed square in
problem 15 (Coolidge 1940, pp. 21-22).

The high degree of facility with which the
Han mathematicians could employ such
geometrically conceived algebraic solution
schemes attests to a keen sense of spatial
perception and an appreciation of the addi-
tive property of area measure. One cannot

help but wonder about the influence of ma-
nipulative tangram exercises on the devel-
opment of this ability. Recent research on
tangrams attributes their origin to the
Chou dynasty (Li and Morrill 1971), pre-
dating the appearance of the Chiu-chang,
and implies certain psychological and edu-
cational designs in their conception. Al-
though the conjecture of tangram exercises’
being more than mere children’s games is
intriguing, its resolution awaits the results
of more detailed research on the intent and
origin of Chinese tangrams (Gardner
1974).

The methods of “piling up squares™ are
not completely unknown in American
classrooms, Commercial models do exist
for the demonstration of the Pythagorean
theorem given in problem 1, and for years
many teachers have employed concrete
models to justify intuitively the expansions
of such expressions as (@ + b)% (a — b))~
(@ + b) (@ — b), and their cubic analogues.
Multibase arithmetic blocks used by Dienes
or Montessori also employ a technique
involving  manipulation of  squares;
however, such demonstrations are usually
ends in themselves and do not lead into
problem-solving situations. Once students
have been introduced to this technique and
are given a supply of large-grid graph
paper and cardboard, they can explore
and devise their own algebraic-geometric
solutions for selected problems. It is hoped
that this exposition will help in broadening
the scope of possible mathematics-labor-
atory activities.
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