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 From the beginning of human civilization, mathematics has been an integral 

part of society, so much so that even the very first civilized society, Mesopotamia, 

developed an extensive system of mathematics.  What began simply as a need for 

counting things and conducting trade soon became much more complex as surveyors and 

builders found a need for geometry.  These surveyors advanced Babylonian mathematics 

to the point of square roots and Pythagorean triples, and eventually to what modern 

mathematicians call Algebra (A History of Mathematics, Katz 13). 

What makes the Babylonians stand out is not only their chronology, but also their 

method of recording mathematics.  They wrote their work with styluses on clay tablets, 

and this is extremely fortunate for both historians and mathematicians, because these clay 

tablets turned out to be nearly indestructible, and as a result, many have survived to this 

day (A History of Mathematics, Katz 10).  The example that I will be examining in this 

paper comes from such a tablet, problem 9 from BM 13901. 

To properly analyze a primary source of Babylonian mathematics, it is obviously 

important to know the extent of Babylonian mathematical knowledge.  For starters, the 

Babylonians used a base 60, or sexagesimal, number system that included place values.  

They could also derive square roots and solve linear systems.  The Babylonians could 

also solve quadratic, and even cubic equations, and for their time, were extremely 

advanced algebraically (Allen 5-17). 

It is also worthwhile to note that, as far as we can tell, the Babylonians didn’t 

have any practical applications for these types of quadratic problems.  The Indians, 

however, did have some practical applications for these problems, and a particular 

example occurs in the Sulbasutras, when the need arises for brick altars in the shape of 
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falcon.  In the texts, the only details given about the falcon’s trapezoidal tail are the area, 

length of the side that touches the body, and the slope of each side of the trapezoid, given 

indirectly by the method of cutting the square bricks.  As a result, the rest of the figure 

must be deduced through mathematics.  The elements of the trapezoid (a rectangle and 

two right isosceles triangles) can be rearranged to form a rectangle if the two right 

triangles are combined to make a square.  The equation to find the area is then given by 

x2 + ax = A, where a is the length of the side that touches the body, x is the height of the 

rectangle and original trapezoid, and A is the total area.  When the quadratic is solved for 

x, you have all the information needed to build the falcon’s tail (Knudson 64-65).  Math 

historian Jens Hoyrup even remarks that the general design of the quadratic problems in 

the Sulbasutras are very similar to those found in Ancient Mesopotamia, although he 

isn’t certain whether or not the two cultures ever shared mathematical knowledge 

(Knudson 67). 

This particular paper, however, is not about Babylonian mathematics as a whole, 

but rather a comparison of interpretations of a specific Babylonian problem.  The 

comparison will involve both my own analysis and interpretation of the problem and Jens 

Hoyrup’s. 

For my interpretation of problem 9 from the Babylonian math text BM 13901, I 

used the translation from the Katz sourcebook, which was done by Eleanor Robson.  As I 

mentioned before, Babylonian mathematics was done in sexagesimal or base 60, so in 

order to make the arithmetic more clear, I added the corresponding base 10, decimal 

number in parentheses next to every sexagesimal number.  The following is the Robson 

translation: 
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“I summed the areas of my two square-sides so that it was 0;21 40 (13/36).  A 

square-side exceeds the (other) square-side by 0;10 (1/6).  You break off half of 

0;21 40 (13/36) and you  write down 0;10 50 (13/72).  You break off half of 0;10 

(1/6) and then you combine 0;05 (1/12) and 0;05 (1/12).  You take away 0;00 25 

(1/144) from the middle of 0;10 50 (13/72) and then 0;10 25 (25/144) squares 

0;25 (5/12).  You write down 0;25 (5/12) twice.  You add 0;05 (1/12) that you 

combined to the first 0;25 (5/12) so that the square-side is 0;30 (1/2).  You take 

away 0;05 (1/12) from the middle of the second 0;25 (5/12) so that the second 

square-side is 0;20 (1/3)”(Katz Sourcebook 105). 

 

For my interpretation of this translation, I attempted to make each step correspond 

to a geometric or arithmetic operation.  Let’s begin with the first step. 

 

“I summed the areas of my two square-sides so that it was 0;21 40 (13/36).  A 

square-side exceeds the (other) square-side by 0;10 (1/6).” 
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This step is simply states the dimensions of the figures that are referenced in this 

problem.  The square side of the larger square is denoted with the variable x and the 

square side of the smaller square with x-0;10 (1/6).  This step also gives the total area of 

the two squares combined: 0;21 40 (13/36).  These squares are shown in the figure below: 

 

“You break off half of 0;21 40 (13/36) and you  write down 0;10 50 (13/72).” 

 

This step instructs us to break the sum of the areas of the squares in half.  This may have 

been done by positioning the two figures next to each other as shown in the figure below: 
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To break the figure exactly in half, take half off of each of the squares, as shown below.  

This makes the total area of the figure 0;10 50 (13/72).  

 

“You break off half of 0;10 (1/6) and then you combine 0;05 (1/12) and 0;05 

(1/12).” 

 

This is the first step in the problem that is difficult to interpret.  I suggest that the “half of 

0;10 (1/6)” refers to taking half of the rectangle formed by the excess length of the larger 
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square.  This rectangle has a base of x/2 and a height of 0;10 (1/6).  This operation can be 

seen in the figure below: 

 

The “combining of the 0;05 (1/12) and 0;05 (1/12)” may refer to the newly formed 

rectangle taking one of its sides, with a height of 0;05 (1/12), and combining it with its 

other half, also with a height of 0;05 (1/12).  This operation can be seen in the figure 

below. 
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As you can observe in the new figure, two new squares have been formed.  One square 

has the square side x-0;05 (1/12), while the other square has the square side 0;05 (1/12).  

This can be more clearly seen in the figure below: 

 

“You take away 0;00 25 (1/144) from the middle of 0;10 50 (13/72)” 
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The total area of the smaller square with the sides 0;05 (1/12) is now clearly 0;00 25 

(1/144).  This 0;00 25 (1/144) is what the translation is referring to, and the “taking 

away” simply means to remove the smaller square from the larger one, as shown in the 

figure below.  It is also important to note that this is the one instance where my 

interpretation doesn’t follow the text very closely.  The text refers to taking away “from 

the middle”, while my diagrams clearly show a taking away from the side.  This now 

makes the total area of the figure 0;10 25 (25/144). 

 

“and then 0;10 25 (25/144) squares 0;25 (5/12).” 

 

This is simply referring to the fact that the square root of 0;10 25 (25/144) is 0;25 (5/12).  

In modern terms, this gives us x-0;05 (1/12) = 0;25 (5/12).  This fact will be used in the 

next step of the translation. 
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“You write down 0;25 (5/12) twice.” 

 

This tells us to write down the value we proved to be equal to x-0;05 (1/12).  The reason 

it asks us to write it down twice is because we are about to find both the length of the side 

of the original large square, and the length of the side of the original small square. 

 

“You add 0;05 (1/12) that you combined to the first 0;25 (5/12) so that the 

square-side is 0;30 (1/2).” 

 

This operation will give us the length of the side of the original large square.  Due to the 

fact that 0;25 (5/12) = x-0;05 (1/12), we simply add 0;05 (1/12) to each side to obtain the 

value of x.  The result, as stated in the translation is x = 0;30 (1/2). 

 

“You take away 0;05 (1/12) from the middle of the second 0;25 (5/12) so that the 

second square-side is 0;20 (1/3).” 

 

Very similar to the previous step, this step gives us the length of the side of the original 

small square.  Due to the fact that 0;25 (5/12) = x-0;05 (1/12), we simply subtract 0;05 

(1/12) from each side to obtain the value of x-0;10 (1/6).  The result, as stated in the 

translation is x-0;10 (1/6) = 0;20 (1/3). 

That concludes my interpretation of the translation of problem 9 from the 

Babylonian math text BM 13901.  As you can see, I tried to follow the translation word 
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for word, and using some neat geometry tricks and simple algebra I was able to come to a 

solution pretty easily. 

Next comes the interpretation of the same problem by Jens Hoyrup, who has both 

translated and interpreted a wide range of Babylonian mathematical tablets.  The 

translation that Hoyrup uses is slightly different from the translation I used, so we should 

start with examining the differences. 

 

“The surfaces of my two confrontations I have accumulated: 0;21,4[0].  

Confrontation over confrontation 0;10 goes beyond.  The moiety of 0;21,40 you 

break: 0;10,50 you inscribe.  The moiety of 0;10 you break: 0;5 and 0;5 you make 

hold.  0;0,25 inside 0;10,50 you tear out: 0;10,25 makes 0;25 equilateral.  0;25 

until twice you inscribe.  0;5 which you have make hold to the first 0;25 you 

append: 0;30 the confrontation.  0;5 inside the second 0;25 you tear out: 0;20 the 

second confrontation” (Hoyrup 168). 

 

 Hoyrup’s translation appears to be more literal than Robson’s: indeed it is 

scarcely readable without first consulting the detailed index of mathematical procedures 

and the terms used to describe those procedures that Hoyrup provides in the beginning of 

his article.  It will be extremely helpful if we give the definitions for all the words used in 

this translation before we examine it. 

• When the translation uses the word “accumulate,” Hoyrup says that it is referring 

to, “a genuinely numerical addition, and can thus be used to assess the measuring 

numbers of, for example, lengths and areas.”   
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• Hoyrup describes the subtractive procedure of “tearing out” to be the opposite of 

“to append.”  Hoyrup describes the adding procedure of “appending” as operating 

on concrete entities and only joining entities of the same kind and dimension.   

• The term, “to hold,” indicates multiplication and is usually used when a length 

and width are being used to create a rectangle.  The process of “making hold” also 

refers to a length and width coming together to make a rectangle. 

• “To confront” refers to the geometrical procedure of “squaring,” ad naturally the 

noun “confrontation” simply refers to a geometric square. 

• A “moiety” is a “necessary half,” meaning that it is a half derived for a purpose, 

and not coincidental.  It is always half of some entity, and does not refer to the 

number, ½. 

• “Breaking” is the process of deriving a “moiety.”  It is used for no other purpose 

in Babylonian mathematics other than to find a necessary half.(Hoyrup 158-162). 

Now that we know all the terms and their meanings, it is possible to examine Hoyrup’s 

interpretation.  Hoyrup begins by suggesting that the problem is referring to a standard 

diagram.  His goal is to see if the text hints at a specific diagram that was likely used to 

solve the problem.  The first thing Hoyrup does is derive the “moiety” or “necessary half” 

from the total area.  His method of doing so is radically different than my own.  

 Hoyrup proposes a method he believes is in line with what the mathematicians 

were actually doing, based on the fact that other problems in BM 13901 can be 

interpreted in a similar way.  This method employs a diagram that, according to Hoyrup, 

lies in the background of many problems in Babylonian mathematics.  The diagram can 

be seen below: 
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 Hoyrup explains that within the square AH, are the two original squares: ABFQ 

and BCDE.  It’s also easy to see the sum of each square side: AB and BC.  Also 

important is the average square.  It can be seen as the squares AJ and JC.  The deviation, 

d, is represented by NB.  Hoyrup observes that this is most likely the diagram used to 

solve this problem and states that the problem can be followed quite easily with it, but 

doesn’t spell out exactly how.  The easiest way I can see a solution is by creating the two 

average squares AJ and JC and having the two squares d touching at the bottom, like in 

the diagram below: 
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 As you can see, this creates a symmetrical figure that will be very easy to take 

half of, and still has the correct area for the sum of the two squares.  After the step of 

“breaking” the figure into a “moiety,” the figure that remains is identical to the figure I 

created in my solution.  The area of the square can then be computed, and the square-

sides can be easily obtained after that (Hoyrup 180-183). 

 I would first like to discredit the differences in interpretation due to the 

inconsistencies of the translations.  If I had only examined Hoyrup’s translation, I almost 

certainly would have interpreted the passage in the same way.  The only real difference 

between Hoyrup’s translation and my own is how he arrives at the figure made up of the 

average square (z in Hoyrup’s interpretation and x-0;05 in my interpretation), because 

after this figure is obtained, the areas of each square become easy to compute.   

When it comes to the question of which translation is superior, I would have to 

give the edge to the Hoyrup interpretation, due to the fact that it utilizes a diagram that 

appears to be common throughout Babylonian mathematics.  Hoyrup even makes use of 

this diagram again on the BM 13901 in problem 19 where it is used, once again, to obtain 

the sides of a square.  The following is the translation used by Hoyrup in his analysis 

(with added base 10 numbers in parentheses): 

 

“My confrontations I have made hold: T[he] surface I have [accum]ulated.  So 

much as the confrontation over the confrontation goes beyo[nd] together with 

itself: I have made hold, t[o inside the surface] I have appended: 0;23,20 (7/18).  

My confrontations I have [accumulated, 0;50 (5/6).]  0;23,20 (7/18)  until 2 you 

repeat, 0;46,40 (7/9) you inscri[be]  [0;50 (5/6) and 0;50 (5/6) you make hold, 
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0;41,40 (25/36) inside 0;46,40 (7/9) you tear out: 0;5 (1/12).  The igi of 12 is 0;5 

(1/12) to 0;5 (1/12) you raise, 0;0,25 (1/144) makes 0;5 (1/12) equilateral.  The 

moiety of 0;50 (5/6) you break, 0;25 (5/12) to 0;5 (1/12) you append: 0;30 (1/2) 

the first confrontation.  0;5 (1/12) inside 0;25 (5/12) you tear out: 0;20 (1/3) the 

second confrontation.] (Hoyrup 172). 

 

First it is important to note that Hoyrup translates the term “igi” to mean the 

reciprocal of a number.  In this case it simply refers to the reciprocal of 12 being 0;5 (in 

base 60). 

In algebra terms, we are given that the sides x+y =0;50 (5/6).  We are also given 

that the surface has an area of 0;23,20 (7/18).  This surface consists of x2, y 2, and (x–y)2.  

With this information, we are to find both x and y.  The following diagram shows this 

surface, with the dark shaded region being counted twice (once as part of the larger x2 

square and again as the (x-y) 2): 
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To use the diagram effectively, though, one must first double the figure, which is 

done in the translation.  The resulting equation is 2x2+2y2+ 2(x-y) 2=0;46,40 (7/9), and the 

picture of the figure is given by the two diagrams below (the second merely being a 

simplified version of the first), with numbers to denote how many times each area is 

counted: 

 

It becomes pretty clear what the next step is when you look at the second figure: 

take away area the big square (x+y) 2, which is 0;41,40 (25/36) from the total area of the 

figure, which is 0;46,40 (7/9), leaving only the area of a 3(x-y) 2, which is 0;5 (1/12).  

After dividing the area by three, leaving you with 0;1,40 (1/36), you are able to find the 

length of each side of the center square simply by taking the square root of 0;1,40 (1/36), 

which is 0;10 (1/6).  This is extremely useful, because we now know that half of the 

middle side is 0;5 (1/12), (x-y)/2 in algebra terms, and we can add and subtract this from 

the average side of 0;25 (5/12), (x+y)/2 in algebra terms, to obtain the side of the larger 
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square, calculated by adding 0;5 (1/12) to 0;25 (5/12), and to obtain the side of the 

smaller square, calculated by subtracting 0;5 (1/12) from 0;25 (5/12).  These two 

operations complete the problem, giving us the larger square side of 0;30 (1/2), and the 

smaller square side of 0;20 (1/3). 

It is worthwhile to note that this problem presents extremely strong evidence that 

the Babylonians used geometric manipulations to solve algebraic problems rather than 

our modern methods.  This is extremely clear due to the fact that rather than simply 

finding “x+y” and “x-y”, the text states that they instead found “(x+y)/2” and “(x-y)/2”.  

This is unnecessary in modern algebra, but the modern notation would render the diagram 

we employed useless, as it would become necessary to add x+y and x-y.  This would 

leave you with a 2x, which will exceed the side of the diagram by 0;10 (1/6), making it 

extremely difficult to understand what you do next when using only the diagram to solve 

the problem. 

Clearly the standard diagram that Hoyrup suggests for problem 9 has been seen 

before in Babylonian algebra, and due to this fact, his interpretation is, in all likelihood, 

superior to my own.  Regardless, it’s very useful to examine these geometric methods for 

solving problems simply because it shows you the ingenuity of these Ancient 

Mathematicians, and inspires us to approach different problems in new, and often easier 

ways.
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