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 Bernard Bolzano was a Czech, son of Italians, who wrote in German.  He was born in 1781, and 

from his writings we know he first discovered mathematics in 1795, with him stating 15 years later that 

“this science has always been one of my favourite studies, the theoretical part in particular, as a branch 

of philosophy and as a way of practising correct thinking”[2, p.88].  One year later, in 1796, he entered 

the University of Prague to study mathematics, philosophy, and physics.  In 1800, he began to study 

theology as well, and he became a catholic priest in 1804.   

 Through this time, he kept his interest in mathematics, and in 1804 he also released his first 

mathematical writings, translated as “Considerations on Some Objects of Elementary Geometry”.  In 

this book, he first introduces some of the ways that he looks at mathematical concepts and proofs.  

Most notably, he states that proofs should not make use of “some fortuitous, alien, intermediate 

concept” [2, p.32], such as the use of planes in proofs about angles, or the use of motion in proofs about 

space.  Because of this, he sought to reprove basic geometrical concepts, limiting himself as much as 

possible to clearly defined terms, and to prove things in their proper order, only using that which had 

been proven, without reliance on intuitive concepts.  Further, he stated that it was important not only to 

move mathematics forward, but also to trace “back all truths of mathematics to their ultimate 

foundations” [2, p.31].  Bolzano believed that many ideas in mathematics seem intuitive, but that all 

things should be explained in their entirety in order to find the most basic ideas upon which others are 

based.  As an example of this, he noted that it is obvious to intuition that the angles at the base of an 

isosceles triangle are equal, but the early geometers sought to prove it regardless, in order to better 

understand the reasons behind their judgments.  In short, Bolzano wanted to reconstruct mathematics in 

a more rigorous manner, a project which his later papers would continue as well.  As a result, Bolzano's 

mathematical work is all done with thorough explanation, so that a student might be able to read and 

understand it.  Regrettably, this 1804 work attracted little attention. 

 In 1810, Bolzano tried reaching out to the mathematical community again, this time with a 

writing titled “Contributions to a Better-Grounded Presentation of Mathematics”.  In this paper, 
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Bolzano again seeks to correct the flaws he sees in mathematics.  However he saw deeper flaws than he 

did in 1804 – in looking at Euclid, Bolzano states that as Euclid first proved “the equality of triangles; 

[and] only much later their similarity, which is derived through an outrageous detour through a 

consideration of parallel lines as well as the area of triangles etc.!” [4, p.16], then Euclid's entire 

method of proof must be faulty.  Hence, he sought to rectify the situation by attempting to put forward 

a complete reorganization of mathematics and all conceptual sciences, done through the framework of 

logic [4, p.17].  However, the logic of the day was not sufficient, and “Bolzano's project to reform 

mathematics thus also demanded that logic be dragooned into the ranks of the modern sciences” 

[4, p.18].  To accomplish his goals, Bolzano wrote about the subject of mathematics as a whole, with 

sections on what mathematics is and how it is relative to the sciences, as well as seeking to give explicit 

meaning to such things as definitions, axioms, theorems, corollaries, and many others.  Bolzano also 

wrote heavily on the proper use of logic to reach conclusions, and further discussion of how intuition 

should not be used as part of proof.  An important part of this was when he noted that any true proof 

must make use of all of its hypothesis – either the unused parts of the hypothesis are unnecessary, so 

that “the theorem itself must be expressed too narrowly” or “that the proof itself contains some false 

conclusion” [2, p.132].  Bolzano also wrote that, while many mathematicians of the time believed that 

axioms should be those concepts which were obvious, he believed that axioms should be “a ground but 

never a consequence of other propositions”, and that finding proofs for propositions considered to be 

obvious was important, “since they often reveal unnoticed but vital elements of the intrinsic structure of 

the sciences to which they belong” [1, p.11].  However, as with his first paper, Bolzano received little 

response from the mathematical community. 

 Despite his setbacks, Bolzano continued his attempts to push for a more rigorous and grounded 

form of mathematics, publishing another paper in 1816.  In this paper, whose title I will shorten to “The 

Binomial Theorem”, Bolzano noted that existing proofs that the generalized form of the binomial 

expansion was valid all had errors.  A deep problem with existing proofs, one that he had recognized as 
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a sign of a false proof in 1810 is that although it was known that the generalized binomial theorem did 

not work for values of x greater than 1 or less than -1, existing proofs did not use this hypothesis.  In 

other words, if the existing proofs were valid, they would have proven that the binomial theorem held 

for all values of x, which was known to be untrue, and hence these proofs must be invalid.  

Furthermore, Bolzano was opposed to the use of what he referred to as infinitely small quantities, more 

commonly known at the time as infinitesimals – numbers which were considered to be greater than 

zero and less than any fixed quantity.  Instead, he said, he “made use, with equal success, of the concept 

of those quantities, which can become smaller than any given quantity, or [...] quantities which can 

become as small as desired” [2, p.158], replacing numbers that are smaller than any given number with 

those that can become smaller than any fixed number – a seemingly small distinction, but insightful 

and forward-thinking.  Thanks to the realization of this problem, Bolzano was able to construct a 

definition of convergence far more well-defined that of other mathematicians of his time.  In the 

following selection, I will show how Bolzano sought to introduce students to these quantities and their 

properties, in §14 through §18 of “The Binomial Theorem” § is the symbol Bolzano uses to denote 

each section of his writings. All comments in square brackets are mine. 

 

§14 

 Convention.  To designate a quantity [allowed to be either positive or negative] which can become 

 smaller [closer to zero] than any given quantity, we choose the symbols ω, Ω or something similar. 

 

In the next section, Bolzano uses the < symbol, but without the modern meaning.  To Bolzano, “less 

than” meant “closer to zero”.  Hence, whenever Bolzano writes a < b, what he means in modern 

notation is ∣𝑎∣ < ∣𝑏∣. His format will be kept as is. 
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§15 

 Lemma.  If each of the quantities 𝜔, 𝜔
(1)

, 𝜔
(2)

, . . . , 𝜔
(𝑚)

[Bolzano uses I in place of 1 in his texts , but we 

 change it to 1 for convenience] can become as small as desired while the (finite) number of them 

 does not alter, then their algebraic sum or difference is also a quantity which can become as 

 small as desired, i.e. 

𝜔 ± 𝜔
(1)

± 𝜔
(2)

±. . . ± 𝜔
(𝑚)

= 𝛺. 

 Proof.  For if the sum of these quantities is to be < D, where D designates some finite quantity, 

 then if there is a constant number n of them, each of them may be taken < 
𝐷

𝑛
, which is 

 possible as a consequence of the assumption [that each ω can be made less than any given quantity].  

 Then certainly 𝜔 ± 𝜔
(1)

± 𝜔
(2)

±. . . ± 𝜔
(𝑚)

< 𝐷, even if the terms of this sum should all be positive, 

 and all the more so in any other case. [End of Proof] 

§16 

 Corollary.  Therefore also (𝐴 + 𝜔) ± (𝐵 + 𝜔
(1)

) ± (𝐶 + 𝜔
(2)

) ±. . . ± (𝑅 + 𝜔
(𝑟)

) = 𝐴 ± 𝐵 ±

𝐶±. . . ±𝑅 + 𝛺, if the number of these terms does not change, while 𝜔, 𝜔
(1)

, . . . , 𝜔
(𝑟)

can [each] become as 

small as desired.   

 [Proof of Corollary] For in fact, (𝐴 + 𝜔) ± (𝐵 + 𝑤
(1)

) ± (𝐶 + 𝜔
(2)

)±. . . ±(𝑅 + 𝜔
(𝑟)

) 

 =𝐴 ± 𝐵 ± 𝐶±. . . ±𝑅 + (𝜔 ± 𝜔
(1)

± 𝜔
(2)

±. . . ± 𝜔
(𝑟)

) 

 =𝐴 ± 𝐵 ± 𝐶±. . . ±𝑅 + 𝛺 (§15). [End of Proof] 

§17 

 Lemma. Every product of a quantity which remains constant, and another which can become 

 smaller than any given quantity, can itself become smaller than any given quantity.  That is, 

 A.ω = Ω [Note that Bolzano uses a period to represent multiplication, and we will keep his representation]. 
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 Proof.  For if A.ω is to be < D, then just take 𝜔 <
𝐷

𝐴
. [End of Proof] 

§18 

 Lemma.  (𝐴 + 𝜔)(𝐵 + 𝜔
(1)

) = 𝐴. 𝐵 + 𝛺. 

 Proof.  For (𝐴 + 𝜔) (𝐵 + 𝜔
(1)

) = 𝐴. 𝐵 + 𝜔. 𝐵 + 𝜔
(1)

. 𝐴 + 𝜔
(1)

. 𝜔 = 𝐴. 𝐵 + 𝛺(§§17, 15).  

 [End of Proof] 

 

 Sadly, this 1816 paper was not well noticed by mathematicians at the time either.  Bolzano, not 

discouraged, pushed forward, publishing in 1817 another paper whose title will be shortened to “A 

Purely Analytic Proof”.  In this paper, he seeks to prove that given a continuous function f, if f(a) < 0 

and f(b) > 0 for some a and b, then there exists some c between a and b such that f(c) = 0.  Though this 

concept may seem obvious, Bolzano notes that proofs up to this time had relied far too heavily on 

geometric intuition, incorrect concepts of continuity of a function, or far more complicated assumptions 

than should be permitted.  As such, he first seeks to provide a correct definition of continuity for him to 

work from, stating that “the expression that a function fx varies according to the law of continuity for 

all values of x inside or outside certain limits means only that, if x is any such value the difference  

f(x + ω) – fx can be made smaller than any given quantity, provided ω can be taken as small as we 

please, or 

f(x + ω) = f(x) + Ω.” [2, p.256].  In this simple statement placed in his preface, Bolzano gave the most 

correct definition of continuity of his time.  Later in his preface he also notes that to prove this theorem, 

it would be sufficient to prove the more general statement that “if two continuous functions of x, fx and 

ϕx, have the property that for x = α, fα < ϕα, but for x = β, fβ > ϕβ, there must always exist some value 

of x lying between α and β for which fx = ϕx” [2, p.260], and it is this that he seeks to prove first.  We 

will proceed to examine some of the statements Bolzano proves in order to obtain this result in selected 

sections from “A Purely Analytic Proof”. We first note that a sequence is an ordered list, while a series 
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is the sum of all of the terms of a sequence, but Bolzano refers to sequences as “series” and to what we 

call series as “the value of the series”. 

§1 

 Convention. Suppose that for a series of quantities the special case does not occur that from a 

 certain term onwards all the terms are each zero, as happens for example after the (n + 1)th term 

 in the binomial series for every positive whole-numbered exponent n.  Then it is obvious that 

 the value of this series, that is, the quantity resulting from its summation of its terms, cannot 

 always remain the same if the number of terms is arbitrarily increased.  In particular this value 

 must certainly change every time the number of terms is increased, even by a single one which 

 is not zero.  Hence the value of a series depends not only on the rule determining the formation 

 of the individual terms but also on their number.  So this value represents a variable quantity 

 even though the form and magnitude of the individual terms remain unchanged.  With this in 

 mind, we denote a function of x, which consists of an arbitrarily extendible series of terms and 

 whose value therefore depends not only on x but also on the number of terms r, by 𝐹
(𝑟)

(𝑥) or 

 𝐹
𝑟

𝑥 [The rth partial sum of a power series in x]. So, for example, 

𝐴 + 𝐵𝑥 + 𝐶𝑥2+. . . +𝑅𝑥𝑟 = 𝐹
𝑟

𝑥, while 𝐴 + 𝐵𝑥 + 𝐶𝑥2+. . . +𝑅𝑥𝑟+. . . +𝑆𝑥𝑟+𝑠 = 𝐹
(𝑟+𝑠)

𝑥. 

 

Although Bolzano introduces, and continues to work with, partial sums of power series, his arguments 

would still have held for partial sums of arbitrary series, as any series can be easily represented as a 

power series with x = 1.  §2 through §6 are corollaries of §1.  §2 states that each further term in a series 

can be either constant or variable, and introduces a geometric series 𝑎 + 𝑎𝑒 + 𝑎𝑒2 + 𝑎𝑒3+. . ., where e 

is the common ratio.  §3 states that there exist series which can exceed any given value if enough terms 

are summed.  In §4 and §5, Bolzano notes that there exist series that do not exceed some given value, 

and some of these series have the characteristic that the difference between the value of the series after 
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r terms and after r + s terms can be made as small as desired, provided r is made large enough.  This is 

what is now known as the Cauchy Criterion for convergence of a series, named for Augustin-Louis 

Cauchy, who discovered it separately in 1821, 4 years later.  Further, he notes that the previously 

introduced geometric series has this property for the common ratio -1 < e < 1, and that it must also hold 

for all series that decrease more quickly than a geometric series.  We begin again with §6. 

 

§6 

 Corollary 5.  If the values of the sums of the first n, n + 1, n + 2, …, n + r terms of a series [now 

 called partial sums of the series] like those of §5 [so the difference between the values of the series after r and 

 after r + s terms can be made arbitrarily small – in this corollary he uses n and r instead of r and s] are denoted 

 (§1) by 𝐹
𝑛

𝑥, 𝐹
𝑛+1

𝑥, 𝐹
𝑛+2

𝑥, . . . , 𝐹
𝑛+𝑟

𝑥, [so that they are represented by power series] respectively, then the 

 quantities 

𝐹
1

𝑥, 𝐹
2

𝑥, 𝐹
3

𝑥, . . . , 𝐹
𝑛

𝑥, . . . , 𝐹
𝑛+𝑟

𝑥, . .. 

[𝐹
1

𝑥 = 𝐴 + 𝐵𝑥; 𝐹
2

𝑥 = 𝐴 + 𝐵𝑥 + 𝐶𝑥2; . ..] 

 represent a new series (called the series of sums of the previous one) [Bolzano does not write this new 

 “series” as a sum, so we would refer to it as a sequence today].  By assumption this has the special 

 property that the difference between its nth term 𝐹
𝑛

𝑥 and every later term 𝐹
𝑛+𝑟

𝑥 (no matter 

 how far from that nth term) stays smaller than any given quantity, provided n has first been 

 taken large enough.  This difference is the increase produced in the original series by a 

 continuation beyond its nth term, and by the assumption, provided n has been taken large 

 enough, this increase should be as small as we please. 

 

In the following section, Bolzano makes an unstated assumption about the real numbers – what is now 

known as the “Axiom of Completeness”, which states that the real number line has no “holes” or 
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“gaps”.  This axiom must be assumed for Bolzano's proof, but he does so without seeming to realize his 

assumption.  This axiom may be stated in multiple equivalent ways, and we will examine some of these 

equivalent statements when appropriate. 

 

§7 

 Theorem.  If a series [sequence] of quantities 

𝐹
1

𝑥, 𝐹
2

𝑥, 𝐹
3

𝑥, . . . , 𝐹
𝑛

𝑥, . . . , 𝐹
𝑛+𝑟

𝑥, . .. 

 has the property that the difference between its nth term 𝐹
𝑛

𝑥 and every later one 𝐹
𝑛+𝑟

𝑥,

 however far this latter term may be from the former, remains smaller than any given quantity if 

 n has been taken large enough, then there is always a certain constant quantity, and indeed only 

 one, which the terms of this series [sequence] approach and to which they can come as near as we 

 please if the series [sequence] is continued far enough. 

 [In modern terms, if a sequence meets the Cauchy Criterion for convergence of a sequence, the value of its nth term 

 converges as n increases] 

 

 Proof.  It is clear from §6 that a series [sequence] such as that described in the theorem is 

 possible.  But the hypothesis that there exists a quantity X which the terms of the 

 series [sequence] approach as closely as we please when it is continued ever further certainly 

 contains nothing impossible, provided it is not assumed this quantity be unique and constant.  

 For if it is to be a quantity which may vary then it can, of course, always be taken so that it is 

 suitably near the term 𝐹
𝑛

𝑥 with which it is just now being compared – even exactly the same 

 as it [The value of the terms of this sequence can clearly approach some variable term, as we can simply set the 

 variable to always be as near as we wish to the nth term of the sequence].  [Claim] But also the assumption 

 [the existence of] of a constant quantity with this property of proximity to the terms of our series 
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 [sequence] contains nothing impossible because on this assumption it is possible to determine this 

 quantity as accurately as we please.  [Proof of Claim] For suppose we want to determine X so 

 accurately that the difference between the assumed value and the true value of X does not 

 exceed a given quantity d, no matter how small. 

 

This is where Bolzano makes his earlier-mentioned assumption of the completeness axiom.  It is now 

known that one way of stating the completeness axiom is that every sequence which meets the Cauchy 

Criterion converges to some real number.  When Bolzano assumes that if we can approximate a real 

number X as closely as we wish, then it exists, he is assuming the completeness axiom without stating 

it. 

 

 Then we simply look in the given series for a term 𝐹
𝑛

𝑥 with the property that every 

 succeeding term 𝐹
𝑛+𝑟

𝑥 differs from it by less than ±𝑑. By the assumption [in the statement of 

 the theorem] there must be such an 𝐹
𝑛

𝑥. Now I say that the value of 𝐹
𝑛

𝑥 differs from the true 

 value of the quantity X by at most ±𝑑. For if r is increased arbitrarily, for the same n, the 

 difference 𝑋 − 𝐹
𝑛+𝑟

𝑥 = ±𝜔 can become as small as we please.  But the difference 

 𝐹
𝑛

𝑥 − 𝐹
𝑛+𝑟

𝑥 [𝑂𝑥𝑛+1+. . . +𝑅𝑥𝑛+𝑟] always remains < ±𝑑, however large r is taken.  Therefore the 

 differences 

𝑋 − 𝐹
𝑛

𝑥 = (𝑋 − 𝐹
𝑛+𝑟

𝑥) − (𝐹
𝑛

𝑥 − 𝐹
𝑛+𝑟

𝑥) 

 must also remain < ±(𝑑 + 𝜔) [Recall from above that Bolzano means < ∣𝑑 + 𝜔∣]. But since for the 

 same n this is a constant quantity, while ω can be made as small as we please by increasing r, 

 then 𝑋 − 𝐹
𝑛

𝑥 must be = or < ±𝑑. For if it were greater [than d] and = ±(𝑑 + 𝑒), for 

 example [where e is some arbitrary value], it would be impossible for the relation d + e < d + ω, i.e. e 
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 < ω, to hold if ω is reduced further [as e is some fixed quantity, and ω can be made less than any fixed 

 quantity by definition] .  The true value of X therefore differs from the value of the term 𝐹
𝑛

𝑥 by at 

 most d, and can therefore be determined as accurately as we please since d can be taken 

 arbitrarily small.  There is therefore a real quantity to which the terms of the series under 

 discussion [the sequence which Bolzano refers to as the series of sums] approach as closely as we please 

 if the series is continued far enough.  [Proof that X is unique] But there is only one such quantity.  

 For suppose that besides X there was another constant quantity Y which the terms of the series 

 approach as much as we please if it is continued far enough, then the differences   

 𝑋 − 𝐹
𝑛+𝑟

𝑥 = 𝜔 and 𝑌 − 𝐹
𝑛+𝑟

𝑥 = 𝜔 
1

can be made as small as we please if r is allowed to be large 

 enough.  Therefore this must also hold for their own difference, i.e. for 𝑋 − 𝑌 = 𝜔 − 𝜔 
1

which, 

 if X and Y are held to be constant quantities, is impossible unless one assumes X = Y. 

 [End of Proof] 

 

In §9, Bolzano states as a corollary that as the terms of this sequence approach some specific value, so 

must the value of the original series approach some specific value as more terms are added.  In §10, 

Bolzano notes that this statement only holds if the change after an arbitrary number of further terms can 

be made as small as we please, rather than the change after an individual term, and gives the harmonic 

series as an example of when such a series fails to approach a specific value.  We continue with §11. 

 

§11 

 Preamble.  In investigations of applied mathematics it is often the case that we learn that a 

 definite property M applies to all values of a variable quantity x which are smaller than a 

 certain u, without at the same time learning that this property does not apply to values which are 

 greater than u.  In such cases there can still perhaps be some 𝑢 
1

that is > u for which, in the 
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 same way as it holds for u, all values of x lower than 𝑢
1
 possess property M.  Indeed this 

 property M may even belong to all values of x without exception.  But if this alone is known, 

 that M does not belong to all x in general, then by combining these two conditions we will now 

 be justified in concluding: there is a certain quantity U which is the greatest of those for which 

 it is true that all smaller values of x possess property M.  This is proved in the following 

 theorem. 

 

In the following theorem, Bolzano proves the existence of what is now known as the least upper bound, 

or the supremum, of a set of real numbers.  This is now known to be one of the ways of stating the 

completeness axiom.  This theorem is also known for its connection to another statement of the 

completeness axiom, known as the Bolzano-Weierstrass Theorem.  The Bolzano-Weierstrass Theorem 

states that any bounded sequence of real numbers has a convergent subsequence, or alternatively, that 

any infinite bounded set of real numbers, A, has a limit point.  This connection can be seen as follows - 

if we let U be the supremum of values u for which there are infinite values in A less than u, then it can 

be seen that between U – ω and any U + ω there must be infinite values in A, meaning that there are an 

infinite number of points from A in any open interval around U, which makes U a limit point of A.  

This theorem was proven independently by Weierstrass around 50 years later, and Bolzano's name was 

later attached due to its connection to the existence of the supremum. 

 

§12 

 Theorem.  If a property M does not apply to all values of a variable quantity x but does apply to 

 all values smaller than a certain u, then there is always a quantity U which is the greatest of 

 those of which it can be asserted that all smaller x possess the property M. 

  

 Proof.  1.  Because the property M holds for all x smaller than u but nevertheless not for all x, 
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 there is certainly some quantity V = u + D (where D represents something positive) of which it 

 can be asserted that M does not apply to all x which are < V = u + D.  If I then raise the question 

 of whether M in fact applies to all x which are < u +
𝐷

2𝑚 where the exponent m is in turn first 

 0, then 1, then 2, then 3, etc., I am sure that the first of my questions will have to be answered 

 'no'.  For the question of whether M applies to all x which are < u +
𝐷

20 is the same as that of 

 whether M applies to all x which are < u + D, which is ruled out by the assumption.  What 

 matters is whether all succeeding questions, which arise as m gradually gets larger, will also be 

 ruled out.  Should this be the case, it is evident that u itself is the greatest value for which the 

 assertion holds that smaller x have the property M.  For if there was an even greater value, for 

 example u + d, i.e. if the assertion held that also all x which are < u + d have the property M, 

 then it is obvious that if I take m large enough, u +
𝐷

2𝑚 will at some time be = or < u + d.  

 Consequently if M applies to all x which are < u + d it also applies to all x which are < u + 

 
𝐷

2𝑚. We would therefore have said 'no' to this question but would have had to say 'yes' [a 

 contradiction, which implies our assumption that all x < u + d have the property M is incorrect].  Thus it is 

 proved that in this case (when we say 'no' to all the above questions) there is a certain quantity 

 U (namely u itself) which is the greatest for which the assertion holds that all x below it poses 

 the property M. 

 2. However, if one of the above questions is answered 'yes' and m is the particular value of the 

 exponent for which this happens first (m can be 1 but, as we have seen, not 0), then I now know 

 that the property M applies to all x which are < u +
𝐷

2𝑚 but not to all x which are < u +  

 
𝐷

2𝑚−1 [As we answered 'no' for all values less than m].  But the difference between u +
𝐷

2𝑚−1 and 

 u +
𝐷

2𝑚 is =
𝐷

2𝑚 [because 
𝐷

2𝑚−1 = 2 ×
𝐷

2𝑚].  If I therefore deal with this as I did before with the 

 difference D, i.e. if I raise the question of whether M applies to all x which are 
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< 𝑢 +
𝐷

2𝑚 +
𝐷

2𝑚+𝑛 

 and here the exponent n denotes first 0, then 1, then 2, etc., then I am sure once again that at 

 least the first of these questions will have to be answered 'no'.  For to ask whether M applies to 

 all x which are 

< 𝑢 +
𝐷

2𝑚 +
𝐷

2𝑚+0 

 is just the same as asking whether M applies to all x which are < u +
𝐷

2𝑚−1, which has 

 previously been denied.  But if all my succeeding questions are also to be answered negatively 

 as I gradually make n larger and larger, then it would appear, as before, that u +
𝐷

2𝑚 is that 

 greatest value, or the U, for which the assertion holds that all x below it possess the property M. 

 3. However, if one of these questions is answered positively and this happens first for the 

 particular value n, then I now know M applies to all x which are 

< 𝑢 +
𝐷

2𝑚 +
𝐷

2𝑚+𝑛 

 but not to all x which are 

< 𝑢 +
𝐷

2𝑚 +
𝐷

2𝑚+𝑛−1. 

 The difference between these two quantities is = 
𝐷

2𝑚+𝑛 and I deal with this again as before 

 with 
𝐷

2𝑚
, etc. 

 4. If I continue this way as long as I please it may be seen that the result I finally obtain must be 

 one of two things. 

 (a) Either I find a value of the form 

𝑢 +
𝐷

2𝑚
+

𝐷

2𝑚+𝑛
+. . . +

𝐷

2𝑚+𝑛+...+𝑟+𝑠
 

 which appears to be the greatest for which the assertion holds that all x below it possess the 

 property M.  This happens in the case when the question of whether M applies to all x which are 



   15 

< 𝑢 +
𝐷

2𝑚 +
𝐷

2𝑚+𝑛 +. . . +
𝐷

2𝑚+𝑛+...+𝑟+𝑠 

 are answered with 'no' for every value of s. 

 (b) Or I at least find that M does indeed apply to all x which are 

< 𝑢 +
𝐷

2𝑚
+

𝐷

2𝑚+𝑛
+. . . +

𝐷

2𝑚+𝑛+...+𝑟
 

 but not to all x which are 

< 𝑢 +
𝐷

2𝑚 +
𝐷

2𝑚+𝑛 +. . . +
𝐷

2𝑚+𝑛+...+𝑟−1. 

 Here I am always free to make the number of terms in these two quantities even greater through 

 new questions. 

 

 5. Now if the first case occurs the truth of the theorem is already proved.  In the second case we 

 may remark that the quantity 

𝑢 +
𝐷

2𝑚
+

𝐷

2𝑚+𝑛
+. . . +

𝐷

2𝑚+𝑛+...+𝑟
 

 represents a series whose number of terms I can increase arbitrarily and which belongs to the 

 class described in §5.  This is because, depending on whether m, n, …, r are all =1, or some of 

 them are greater than 1, the series decreases at the same rate, or more rapidly than, a geometric 

 progression whose ratio is the proper fraction 
1

2
. From this it follows that it has the property 

 of §9, i.e. there is a certain constant quantity to which it can come as close as we please if the 

 number of terms is increased sufficiently.  Let this quantity be U; then I claim the property M 

 holds for all x which are < U.  For if it did not hold for some x which is < U, e.g. for U – δ, then 

 the quantity 

𝑢 +
𝐷

2𝑚
+

𝐷

2𝑚+𝑛
+. . . +

𝐷

2𝑚+𝑛+...+𝑟
 

 must always keep at the distance  δ from U because for all x that are smaller than it, the property 

 M is to hold.  Since every x that is 
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= 𝑢 +
𝐷

2𝑚 +
𝐷

2𝑚+𝑛 +. . . +
𝐷

2𝑚+𝑛+...+𝑟 − 𝜔 

 

 however small ω is [assuming ω is positive], possesses the property M, while on the other hand, M 

 is not to apply to x = U – δ, it must therefore be that 

𝑈 − 𝛿 > 𝑢 +
𝐷

2𝑚
+

𝐷

2𝑚+𝑛
+. . . +

𝐷

2𝑚+𝑛+...+𝑟
− 𝜔 

 or 

𝑈 − [𝑢 +
𝐷

2𝑚
+

𝐷

2𝑚+𝑛
+. . . +

𝐷

2𝑚+𝑛+...+𝑟
] > 𝛿 − 𝜔 

 Hence the difference between U and the series cannot become as small as we please, since δ – 

 ω cannot become as small as we please because δ does not change, while ω can become smaller 

 than any given quantity [This results in a contradiction, as U is, by assumption, what the value of the series 

 approaches.  Therefore, the assumption that M does not hold for some x < U must be false].  But just as little 

 can M hold for all x which are < U + ε.  For the value of the series 

𝑢 +
𝐷

2𝑚
+

𝐷

2𝑚+𝑛
+. . . +

𝐷

2𝑚+𝑛+...+𝑟−1
 

 can be brought as close to the value of the series 

𝑢 +
𝐷

2𝑚
+

𝐷

2𝑚+𝑛
+. . . +

𝐷

2𝑚+𝑛+...+𝑟
 

 as we please because the difference of the two is only 
𝐷

2𝑚+𝑛+...+𝑟. Further, the value of the  latter 

 series can be brought as close as we please to the quantity U.  Therefore the value of the 

 first series can also come as close to U as we please.  So 

𝑢 +
𝐷

2𝑚
+

𝐷

2𝑚+𝑛
+. . . +

𝐷

2𝑚+𝑛+...+𝑟−1
 

 can certainly become < U + ε.  But now by assumption M does not hold for all x which are 

< 𝑢 +
𝐷

2𝑚
+

𝐷

2𝑚+𝑛
+. . . +

𝐷

2𝑚+𝑛+...+𝑟−1
; 
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 so much less therefore for all x which are < U + ε.  Therefore U is the greatest value for which 

 the assertion holds that all x below it possess the property M. [End of Proof] 

 

After this, in §13 and §14, Bolzano notes the importance of his theorem, and seeks to correct a number 

of errors that he believes those reading may believe or have believed, and then proceeds to prove the 

general case of the mean value theorem he introduced in his preface in §15, followed by a more 

specific result that any polynomial function must have a root between its positive and negative values. 

 

 Bernard Bolzano published another mathematical work in 1817, but in 1819, the murder of a 

conservative writer was used as reason to purge governmental and university positions of liberals.  As a 

result, Bolzano lost his position at the University of Prague, was only allowed to publish his works in 

foreign journals, and was even put on trial by the Catholic Church, though he was declared innocent 

[2, p.11-12].  Punished and censored, he continued to write, completing his great work on logic, 

“Theory of Science”, in 1827, but not publishing it until 1837 due to this censorship.  During this time 

he also published works on religion and metaphysics, but after completing “Theory of Science”, he 

began work on another great mathematical work – “Theory of Quantity”.  Though this work was still 

unfinished by the time of Bolzano's death in 1848, a student posthumously published parts of it under 

the title of “The Paradoxes of the Infinite” in 1851.  This work, along with the “Theory of Science”, 

gained him greater renown among the logicians, and to some degree among mathematicians as well.  

Cantor referred to his proof of the existence of an infinite set in “Paradoxes”, and may have been 

influenced by his mention of the fact that an infinite set can have one-to-one correspondence with its 

proper subsets [3].  However, the majority of his mathematical results continued to be unknown, and 

large sections his work on “Theory of Quantity” remained unpublished.  This work included, among 

other things, the first construction of a function everywhere continuous and nowhere differentiable over 

its domain, a feat not accomplished again until Weierstrass did so in 1872, though Bolzano was only 
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able to prove that between any two points at which his function was non-differentiable there existed a 

third. [2, p.351-352].  However, Bolzano's older mathematical writings were eventually rediscovered 

by a mathematician named Otto Stolz in 1881, and he finally came to gain the notice of the 

mathematical community, for they could, by then, view his approach as far more modern than that of 

his peers.  At this late date, his works were not able to bring to mathematics the logical soundness that 

he had wished for.  However, his goals were accomplished regardless, for other mathematicians, such 

as Cauchy and Weierstrass, had followed Bolzano's path toward rigor. 
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