
A Mind, a Machine, and a Game in Between
Claude Shannon and the Origin of the Information Age

Mithra Karamchedu | Harvey Mudd College

Supervising Instructor: Jemma Lorenat, Pitzer College



“The specter of information is haunting sciences.” In 1989, the quantum physicist

Wojciech H. Zurek invited his colleagues at the Santa Fe Institute to respond to this simple

yet profound prompt. Zurek’s colleagues, each of whom felt the “specter of information” in

very deep ways within their work, spread far across the scientific community. They were

mathematicians, computer scientists, statisticians, physicists, cosmologists, and biologists;

even more broadly, ecologists, economists, and psychologists could feel the reverberations of

information theory. As Zurek suggested, information theory was like an inexplicable spark

that seemed to inspire every new idea in the sciences. But what inspired Claude Shannon,

the pioneer of information theory, also toed the line between the simple and the profound:

games, puzzles, and toys.

It is always challenging to encapsulate someone in a single word, but many would

describe Claude Shannon as playful. Jimmy Soni and Rob Goodman’s 2017 biography of

Shannon, A Mind at Play, does just that, showing links between Shannon’s intellectual work

and his playful and creative side, from his mathematical work on juggling to his development

of chess-playing machines. In fact, Shannon’s relationship with play might go even further,

some of his most technical work being not only connected to but also a direct product of

his playful experimentation. For Shannon, “play” usually meant conceptualizing toys and

games, or finding an abstract property guiding a practical engineering system.

As a child growing up in the small town of Gaylord, Michigan in the 1920s and 30s,

Shannon immersed himself in creating machines and contraptions that exercised his inner

whimsy. According to Soni and Goodman,

One neighbor, Shirley Hutchins Gidden, offered to the Otsego Herald Times that
Shannon and her brother, Rodney Hutchins, were a conspiratorial pair . . . One
experiment stood out: a makeshift elevator built by the two boys inside the
Hutchins family barn. Shirley was the ‘guinea pig,’ the first to take a ride on the
elevator, and it says something about the quality of the boys’ handiwork (or her
luck) that she lived to tell the tale to a newspaper seven years later (Soni and
Goodman 11).

Shannon and his close friend Rodney Hutchins were often up to something, and their most

famous invention hints at the direction Shannon’s young mind was blossoming.
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Gaylord was too small a town for major telephone and telegraph companies to justify

expanding to, but luckily, its citizens were both industrious and enterprising. Like many

other small towns, they installed their own wire across the town fences, forming a commu-

nications network that Shannon not only took notice of, but took part in: “Claude’s stretch

is electric. He charged it himself: he hooked up dry-cell batteries at each end, and spliced

spare wire into any gaps to run the current unbroken. Insulation was anything at hand:

leather straps, glass bottlenecks, corncobs, inner-tube pieces. Keypads at each end—one at

his house on North Center Street, the other at his friend’s house [Rodney Hutchins] a mile

away—made it a private barbed-wire telegraph” (Soni and Goodman 4). With this inven-

tion in particular, we see Shannon’s mind begin to embrace the problems of information not

just theoretically but mechanically. The question here is, how can we build something that

sends information? But Shannon was just as fascinated by the more mathematical aspects of

communication, being especially fond of Morse code and cryptography: “On April 17, 1930,

thirteen-year-old Claude attended a Boy Scout rally and won ‘first place in the second class

wig-wag signaling contest.’ The object was to speak Morse code with the body, and no scout

in the county spoke it as quickly or accurately as Claude” (Soni and Goodman 10–11). Shan-

non’s favorite Edgar Allan Poe story was “The Gold-Bug,” which ends with a brief lesson on

cryptography and breaking ciphers with frequency analysis (Gleick 171). Although it was

many years later when Shannon would write his seminal paper “A Mathematical Theory of

Communication” (abbr. AMToC ), his childhood pastimes, driven by his whimsy and desire

to play, leave clues about the specter of information that may have been brewing inside.

Both mechanical and mathematical, Shannon struggled to decide whether he should

major in engineering or mathematics; he knew whatever field he was interested in touched

both, but that field didn’t have a complete name quite yet. After starting in the fall of 1932,

he majored in both electrical engineering and mathematics at the University of Michigan,

leaving him “trained in two fields that would prove essential to his later successes” (Soni and

Goodman 17).

In his 2011 book The Information, James Gleick highlights a pivotal moment in

Shannon’s academic journey that brought him closer to uniting these two interests. In 1936,

Shannon’s senior year, “he saw a postcard on a bulletin board advertising a graduate-student
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job at the Massachusetts Institute of Technology. Vannevar Bush, then the dean of engi-

neering, was looking for a research assistant to run a new machine with a peculiar name:

the Differential Analyzer” (Gleick 171). Bush’s Differential Analyzer was monumental in

concept and in scale: the size of a whole room, the Analyzer would solve differential equa-

tions by using wheels and rotors to perform integration. It was an analog machine; to solve

a differential equation, it would create an analogous model of that equation inside itself, a

microcosm of that equation’s continuity and detail—just like how film captures images and

vinyl stores sound. But whenever the input differential equation changed, the machine’s

analog structure meant that its entire internals would have to as well. Bush hired Shannon

to help with this problem, beginning Shannon’s master’s degree at MIT.

At the time, circuit design was seen as more of an art than a science, in that devis-

ing circuits to solve a problem was driven by a deep intuition—a trade knowledge—rather

than formal, systematic logic. Working on Bush’s Differential Analyzer, Shannon found this

slightly perturbing. In the summer of 1937, Shannon also began an internship at AT&T’s

Bell Laboratories in New York, “the heart of the phone company, the owner of the most

complicated, far-reaching network of circuits in existence” (Soni and Goodman 38). While

working there, he couldn’t help but feel that there was a real logic behind the circuitry of

Bell Labs’ telephone networks and Bush’s Differential Analyzer, that there was something

mathematical that could always drive the mechanical. His mind turned to Boolean algebra,

the formal system that lay at the heart of mathematical logic.

To better understand Shannon’s work, let us briefly explore the essence of Boolean

algebra, which we can think of as the theory of three operations, known as And, Or, and

Not, given by the “truth tables” below:

And (∧)
0 0 0
0 1 0
1 0 0
1 1 1

Or (∨)
0 0 0
0 1 1
1 0 1
1 1 1

Not (¬)
0 1
1 0

For example, let us consider the operation And. And takes in two bits as input and gives

one bit as output—we can think of a 0 bit as being “false” and a 1 bit as “true.” Since And

accepts two inputs, each of which can be either 0 or 1, there are 22 = 4 different 2-bit inputs
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we can give the And operator: 0 0, 0 1, 1 0, and 1 1.

We see that And returns a 1 only when both its inputs are 1; otherwise, And is 0. If

x is the first input and y is the second input, then x And y is true precisely when x is true

and y is true. That is, And simply tells us whether both its inputs are true, just like its

name would suggest. Or, on the other hand, returns true when either x or y is true; when

both inputs are false, Or is false too.

But the third operation, Not, is a little different from the other two. Not accepts

only one bit as input and gives one bit as output. If our input x is true, then Not x is false;

if x is false, then Not x is true. Not flips the truth or falsehood of its input. In Boolean

algebra, our inputs x, y, z, . . . are propositions, statements that we would like to evaluate as

either true or false. As an example, if we would like to make sure that (1) today is Monday,

and (2) it is either cloudy or not raining, then we would write the Boolean expression

xAnd (yOr (Not z)) = x ∧ (y ∨ ¬z),

where x is the proposition “Today is Monday,” y is “It is cloudy,” and z is “It is raining.”

The Boolean expression x∧ (y ∨¬z) is true precisely when today is Monday, and it is either

cloudy or not raining.

The reason why these three operations are so powerful is quite surprising! If we were

looking at Boolean operations that accept two bits as input and return one bit as output,

then we would have 24 = 16 possible Boolean operations to consider (as we need to assign

an output of 0 or 1 to each of the four 2-bit input combinations). Interestingly, every single

one of these 16 operators can be expressed as some combination of Ands, Ors, and Nots

chained together, and this result is a deep foundation of Boolean algebra. Let us consider

an arbitrary operation from these 16:
Xor (⊕)
0 0 0
0 1 1
1 0 1
1 1 0

In context, Xor is the “exclusive or”: when we say “It’s either heads or it’s tails,” we’re

really saying “It’s either heads xor it’s tails,” since we don’t have the situation where it’s

heads and tails at the same time. In principle, we could define Xor as this “hard-coded”
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truth table, but we also have another way now! Xor is true precisely when either x or y

is true, but not both. That is, we need to have x Or y, but also not x And y. In other

words, xXor y = (xOr y)And (Not (xAnd y)). Using the logical symbols for And, Or,

Not, and Xor, we find that

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y).

And we have done it! We have defined Xor using our existing building blocks. Not only

can each of these 16 Boolean operators be written as a combination of Ands, Ors, and

Nots, but every Boolean operator with any number of inputs and outputs can too. In the

parlances of electrical engineering and mathematical logic, we say that And, Or, and Not

are a universal gate set or functionally complete, respectively.1 This is a powerful result.

With enough effort, Boolean algebra can capture essentially every logical statement we can

think of, but everything in Boolean algebra can also be written as Ands, Ors, and Nots.

As a result, logic itself can be framed as the story of these three operations, and Shannon

knew that a beautiful and fascinating world lay here.

Up until this point, Boolean algebra mostly lay in the domain of mathematics and

philosophy—Shannon actually learned it in his senior-year philosophy class, being especially

fond of the word “Boooooooolean” (Soni and Goodman 37). By simply playing with circuits

and logic—fields that were considered mostly nonoverlapping—and seeing what he could

find, Shannon discovered a startling fact that transformed an art into a science. He realized

that circuit design is not just driven by logic, but in a sense, circuit design is Boolean algebra.

In Shannon’s 1937 master’s thesis, “A Symbolic Analysis of Relay and Switching Circuits”2

(abbr. ASAoRaSC ), he showed that the And, Or, and Not operators from Boolean algebra

can be implemented as three very simple circuits or “logic gates.” To implement an And gate,

Shannon found a circuit that would produce output current if both its inputs had current

flowing through them. His Or gate produced output current when either input had current,

and his Not gate produced output current only when there was no input current. And these

three gates were enough, showing that machines could perform logic and were even logical
1In fact, we don’t even need to use all three! Since x ∨ y = ¬(¬x ∧ ¬y) and x ∧ y = ¬(¬x ∨ ¬y) (known

as De Morgan’s laws), we can write And as a combination of Ors and Nots, and Or as a combination of
Ands and Nots. Both And and Not as well as Or and Not are universal.

2Later published in the 1938 issue of Transactions of the American Institute of Electrical Engineers.
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in design. Just like that, he made the mechanical mathematical.

But there was a part of Shannon’s thesis that was characteristically “Claude.” After

Shannon introduces these major ideas, he first spends time showing how to convert circuits

with a nonstandard structure (a non-series-parallel structure, to be precise) to his algebraic

form by applying certain transformations; next, he covers some general mathematical re-

sults3 and gives helpful examples where he translates different functions to circuit form; and

then, he spends the rest of his thesis just having fun! According to Gleick, Shannon “followed

this tower of abstraction with practical examples—inventions, on paper, some practical and

some just quirky” (Gleick 174). The language stays technical, but Shannon shows us various

contraptions we can build using these ideas: an electric adder circuit, a “Selective Circuit,”

and even an electric combination lock. “An electric lock is to be constructed with the fol-

lowing characteristics,” he writes. “There are to be five pushbutton switches available on

the front of the lock. These will be labeled a, b, c, d, e . . . ” (Shannon, ASAoRaSC 722).

Shannon’s discovery of the logical foundation of circuit design started with him playing with

two different fields until they fused into a more complete whole—and very fittingly, he in-

jected the same playful spirit into his thesis. Now he had gone the other way, making the

mathematical mechanical.

Shannon’s master’s thesis earned him widespread acclaim, being called by his con-

temporaries “possibly the most important, and also the most famous master’s thesis of the

century,” “one of the greatest master’s theses ever,” and “the most important master’s thesis

of all time” (Soni and Goodman 42). Interestingly, in the same year Alan Turing published

his groundbreaking paper “On Computable Numbers, with an Application to the Entschei-

dungsproblem,” where he introduced the Turing machine, a theoretical model that now

defines what it means for something to be a proper “computer.” Although important in dif-

ferent ways, Shannon and Turing’s work shared a key aspect in common: an emphasis on

digital over analog machines, based on discrete symbols (i.e. bits) rather than true continu-

ity. The impact was sudden: “Less than a decade after Shannon’s paper, the great analog

machine, the differential analyzer, was effectively obsolete, replaced by digital computers
3These results were mainly about how to handle systems of simultaneous equations, as well as under-

standing the behavior of “star” and “mesh” networks (Shannon, ASAoRaSC 716).
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that could do its work literally a thousand times faster” (Soni and Goodman 43).

After Shannon completed his master’s thesis, Bush saw it as an obligation to direct

Shannon’s originality toward the truly meaningful scientific problems of the time. He en-

couraged Shannon to pursue a Ph.D. thesis that would extend these logical ideas to genetics,

developing a mathematical system—just like Boolean algebra—that could formally model

the basis of genetic variation. In 1940, Shannon received his doctorate in mathematics from

MIT with a dissertation titled “An Algebra for Theoretical Genetics”; although Shannon’s

work was deeply insightful and recognized by some contemporaries, it was sadly undervalued,

even by Shannon himself. His attention was shifting, and the real idea he wanted to begin

playing with was communication. In a 1939 letter to Bush, he wrote, “Off and on I have

been working on an analysis of some of the fundamental properties of general systems for

the transmission of intelligence, including telephony, radio, television, telegraphy, etc. . . . ”

(Soni and Goodman 60).

In the ten years that followed after starting his Ph.D., Shannon spent another sum-

mer at Bell Labs, worked as a postdoctoral fellow at the Institute for Advanced Study, and

reunited with Bell Labs as part of the National Defense Research Committee during World

War II, before finally joining Bell Labs as a full-time researcher within their mathematics

department. Even though it was funded by AT&T, an industrial telephone and telegraph

company, Bell Labs offered an intellectual haven whose scientific legacy seems almost myth-

ical: Soni and Goodman cite Jon Gertner, who writes that Bell Labs “was where the future,

which is what we now happen to call the present, was conceived and designed” (Soni and

Goodman 65). In Bell Labs, engineers and especially mathematicians were given the free-

dom to pursue any projects generally related to the Labs’ focus on communication, allowing

Shannon to play with the ideas that truly interested him. In his summer at Bell Labs as

a Ph.D. student, Shannon worked on two problems that let him connect his mathematical

interests in communication with “the part of his nature that was hardheaded and practical”

(Soni and Goodman 72). In one of them, for example, Shannon needed to find the smallest

number of wire colors that would be needed so that different wires that connect to the same

vertex in a network (in graph-theoretic terms, a Shannon multigraph) would have different
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colors.4 At Bell Labs, he was in an environment where he could get his hands dirty, a type

of place that let his mind flourish.

During World War II, Shannon worked with Bell Labs as part of the National De-

fense Research Committee, tasked with handling noise and interference within an “antiair-

craft gun,” a system designed to fire projectiles at fast-moving enemy planes. Even though

Shannon was not especially passionate about his wartime research, it would provide a very

robust foundation for his future academic plans in the theory of communication. After the

war, Shannon was offered a full-time position at the Labs, and he was finally able to devote

himself to the problem of the “transmission of intelligence” that he mentioned to Bush in

1939. Once he finished his Bell Labs workday, Shannon regularly spent many hours late into

the night grappling with this problem; he found key questions at its center: what does it

mean to send or communicate information? Moreover, what really is information?

Shannon’s solution was staggeringly insightful—but also rooted in playfulness at each

step along the way. According to Shannon, information is a measure of surprise or unpre-

dictability. For example, if we are writing a message in English and we use the word “I,” then

there’s a very reasonable chance that the next word will be “am”, “do,” or “have.” In a sense,

the words “am,” “do,” and “have” are slightly redundant because we expected to see them

with high probability. English, like several other languages, has many of these redundancies

built-in: “If the letter u ends a word, the word is probably you. If two consecutive letters are

the same, they are probably ll, ee, ss, or oo. And structure can extend over long distances:

in a message containing the word cow, even after many other characters intervene, the word

cow is relatively likely to occur again. As is the word horse” (Gleick 226).

Shannon experimented with this idea by creating a wonderful toy example: according

to Gleick, he pulled out a mystery novel from his bookshelf and took note of the frequencies

of different letter combinations. First, he made a “zero-order approximation,” made with

random letters and no pattern/redundancy:

XFOML RXKHRJFFJUJ ZLPWCFWKCYKJ FFJEYVKCQSGHYD QPAAMKBZAACIBZLHJQD.
4Shannon’s result appears in his 1949 paper “A Theorem on Coloring the Lines of a Network” (abbr.

AToCtLoaN ) in the Journal of Mathematics and Physics. His solution is quite simple: we take the maximum
number of wires connected to a vertex in the graph (the maximum degree), multiply it by 1.5, and find the
greatest integer at or below this value. Formally, ⌊1.5m⌋ is an upper bound on the number of wire colors
needed, where m is the maximum number of wires connected to a single vertex (Shannon, AToCtLoaN 1).
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Then, he made a first-order approximation, where “each character is independent of the rest,

but the frequencies are those expected in English: more e’s and t ’s, fewer z ’s and j ’s, and

the word lengths look realistic” (Gleick 226):

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL.

Although it’s hard to articulate why, this feels mysteriously closer to English—the vowels

and consonants somehow feel more well-balanced. Shannon repeated the process with a

second-order approximation, taking into account the frequencies of bigrams, or letter pairs:

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT

TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

And then a third-order approximation, incorporating trigram frequencies:

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF

THE REPTAGIN IS REGOACTIONA OF CRE.

Very quickly, the text becomes startlingly English-like! When we instead try to approx-

imate English with word instead of letter frequencies, we get the following second-order

approximation:

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF

THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO

EVER TOLD THE PROBLEM FOR AN UNEXPECTED.5

From these approximations, Shannon realized that languages are filled with pattern, and

patterns are redundancies—patterns are expected pieces of language—so they don’t give us

much new information. If we strongly expect to see a certain character or symbol, we don’t

learn too much when we actually see it. As an example, if we saw the words “the sky is,”

then we wouldn’t be so surprised if the next word was “blue”: this is a quartet of words we

encounter quite often. On the other hand, we would be very surprised if the next word was

“mischievous,” and this surprise teaches us something new that we wouldn’t have expected

before. In another example, Shannon asked his wife and fellow researcher Betty to be his

“test subject”:
5See Gleick 226–227, and Soni and Goodman 146–148, for text approximation examples.

10



He pulled a book from the shelf (it was a Raymond Chandler detective novel,
Pickup on Noon Street), put his finger on a short passage at random, and asked
Betty to start guessing the letter, then the next letter, then the next. The more
text she saw, of course, the better her chances of guessing right. After “a small
oblong reading lamp on the” she got the next letter wrong. But once she
knew it was D, she had no trouble guessing the next three letters (Gleick 230).

The letters “esk” came for free—with little surprise—so they didn’t offer much information.

But the first letter “d” did surprise us, so it does in fact give us new information. In both

these examples, we see that information is a measure of the surprise or unlikelihood of a

message. Curiously enough, this definition of Shannon doesn’t depend on the meaning of

the message, just its statistical structure: “Frequently the messages have meaning ; that is

they refer to or are correlated according to some system with certain physical or conceptual

entities. These semantic aspects of communication are irrelevant to the engineering problem”

(Shannon, AMToC 1). Once again, we see Shannon balancing his desire for mathematical

abstraction with the practicality of building something. But Shannon’s removal of meaning

from information raises an important question: when we have a message, how can we measure

its information content?

In his 1948 paper “A Mathematical Theory of Communication,” Shannon lays forth

all these ideas, defining the problem of communication, what it means for a message to have

information, and how we can measure information. After showing us his approximations

of the English language, Shannon mentions that “The redundancy of ordinary English, not

considering statistical structure over greater distances than about eight letters, is roughly

50%” (Shannon, AMToC 14). In a paper published about two years later, “Prediction

and Entropy of Printed English,”6 Shannon “raised that estimate to 75 percent—warning,

however, that such estimates become ‘more erratic and uncertain, and they depend more

critically on the type of text involved” ’ (Gleick 229). Assuming that the redundancy of

English is 75%, we should be able to shrink or compress our messages to be give-or-take 75%

shorter while still retaining the same information. Specifically, there will exist a scheme that

compresses or encodes our messages to a fraction of their original size (here, about 1/4), and

a scheme that reconstructs or decodes them.7 The length of a message, when it has been
6Published in the Bell System Technical Journal in 1951.
7Numerous algorithms exist for this purpose, such as Shannon-Fano coding, Huffman coding, Lempel-Ziv
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compressed as much as possible, is its information content—known as its entropy. And the

units of entropy: bits.8

Shannon’s predecessors in this style of communications engineering, Ralph Hartley

and Harry Nyquist, had answered this question about entropy for a specific case, when each

symbol or character in the message has the same probability of occurring. For this case,

Hartley and Nyquist’s solution was that the entropy H of the message would be

H = n log2 s,

where n is the original length of the message and s is the number of possible symbols in the

alphabet we are drawing from. Shannon expanded on Hartley and Nyquist’s formula; to fully

understand Shannon’s formula, let us assume that we have a family of symbols that can occur,

consisting of Symbol 1, Symbol 2, Symbol 3, . . . that we chain together to form messages.

Formally speaking, we say that we have a random variable X that represents the symbol that

ultimately occurs; X will be equal to different symbols with different probabilities. These

symbols might be characters, words, or even sequences of words and characters (like the

bigrams and trigrams from before). Let pi denote the probability that X equals Symbol i—

that Symbol i is the next symbol in our message. Then, the entropy of the random variable

X, our source of symbols, is given by

H[X] = −
∑
i

pi log2 pi,

the negative sum of each symbol’s probability times the binary logarithm of its probability.

That is, H is the average binary logarithm of the symbols’ probabilities, just negated. But

this is a statement about the entropy of a random variable, not the entropy of a specific

message. Amazingly though, this is essentially all we need! In his paper, Shannon proves

a result known as his “source coding theorem,” which states that for any message M , the

entropy formula above places a limit on how much we can compress M.9 In particular,

compression, and many others.
8Shannon’s 1948 paper is actually the first written use of the term bit, “a word suggested by J. W. Tukey”

(Shannon, AMToC 1). In his 1938 master’s thesis, Shannon doesn’t use the word “bit” to describe logic
gate inputs and outputs but instead phrases everything in the language of electrical engineering; implicitly,
though, he is referring to the same idea.

9Strictly speaking, the source coding theorem applies in the limit; certain small messages might not be
able to be compressed fully according to the entropy of X, but this error term diminishes for larger messages.
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the entropy of the random variable X is the average entropy of any symbol that we pick

in our family—if we have a message M formed from these symbols, some symbols in M

might be compressed slightly more, some slightly less, but the average compression across

all the symbols in the family is exactly H[X]. And so, for any message we are interested

in, Shannon’s formula will effectively tell us its information content based on the family of

messages it belongs to, making it a shockingly profound result in such a concise package.

There was one other question too: what is “the problem of communication”? Shannon

tackles this question immediately, writing, “The fundamental problem of communication is

that of reproducing at one point either exactly or approximately a message selected at

another point” (Shannon, AMToC 1). Specifically, Shannon says that a communication

system consists of five parts: (1) an information source, (2) a transmitter of that information,

(3) a channel, or the medium we send our messages through, (4) a receiver on the other end

of the channel that reverses the work of the transmitter, and (5) a destination. Optionally,

we can add a sixth element, a noise source, which pollutes and possibly removes information

from the transmitted message along the channel. In Shannon’s formulation, communication

happens precisely when the destination can reproduce messages created at the information

source.

With that, Shannon could give a name to a new field: information theory.

“Most mathematical theories take shape slowly,” Gleick explains. “Shannon’s informa-

tion theory sprang forth like Athena, fully formed” (Gleick 233). Since Shannon published

“A Mathematical Theory of Communication” in the somewhat esoteric Bell System Technical

Journal and his paper was accessible to “a small clutch of communications engineers and

mathematicians,” the academy didn’t immediately take notice (Soni and Goodman 165). But

within a few months, “word of a breakthrough propagated through the community of com-

munications engineers” (Soni and Goodman 166). Soon after, numerous communications

engineers and newly-called “information theorists” wrote papers that built on Shannon’s

framework: he had once again sent ripples cascading through the engineering circles and

even beyond. In 1948, Shannon met with Warren Weaver, the director of the Division of

Natural Sciences at the Rockefeller Foundation, to discuss the implications of these ideas.

The next year, Shannon and Weaver republished the paper in book form, but they changed
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the original title by a single word, giving it a whole new gravity: The Mathematical Theory

of Communication.

The implication of Shannon’s work really speaks for itself in the electronics and com-

munication technologies we use today. According to Soni and Goodman,

[Shannon] would live to see “information” turn from the name of a theory to the
name of an era. “The Magna Carta of the Information Age,” Scientific American
would call Shannon’s 1948 paper decades later. “Without Claude’s work, the
internet as we know it could not have been created,” ran a typical piece of praise.
And on and on: “A major contribution to civilization.” “A universal clue to solving
problems in different fields of science.” “I reread it every year, with undiminished
wonder. I’m sure I get an IQ boost every time.” “I know of no greater work of
genius in the annals of technological thought” (Soni and Goodman 165).

But ultimately, what really excited Shannon was that information theory gave him

new ways to play. For the most part, the types of games that we’ve seen Shannon playing

with are ones you can do with pencil and paper; but by applying information theory and

circuit design, Shannon was able to make games and toys with profound ideas lurking under

their surface.

Stories of Shannon’s elaborate mechanical contraptions are legion: “He was the rare

scientific genius who was just as content rigging up a juggling robot or a flamethrowing trum-

pet as he was pioneering digital circuits” (Soni and Goodman xv). In the 1950s, Shannon

grew increasingly involved with the cybernetics movement, a newly emerging field based on

the power of feedback systems in shaping intelligence, complex natural behavior, etc. During

one cybernetics meeting, Shannon brought a small contraption he had built, an electronic rat

he had named “Theseus.” Theseus could navigate a 5× 5 maze, searching for a goal: inside

its “mind,” it stored 50 bits of information, two bits per square of the board, indicating the

direction it left that square in. The behavior of Theseus was surprisingly human-like: it

could “learn” the structure of the maze so that it would be able to reach the goal starting

from any point of the board (but would have to reset if the maze configuration was changed).

Once, Theseus became stuck in a loop, and the neurophysiologist Ralph Gerard exclaimed,

“A neurosis!” In response, Shannon added an “antineurotic circuit” to prevent any loops from

occurring (Gleick 250).

Theseus showed just how important it was to see the “inside” of the mind, challeng-
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ing some of the contemporary beliefs of behavioral psychology that focused on measuring

external behavior. Shannon’s contraption played a unique role in shifting psychology from

behaviorism to what we see today, a transition known as the “cognitive revolution.”

Shannon had first applied pen-and-paper games to create circuits and define informa-

tion, and now, he applied circuit design and information theory to create physical toys. The

mechanical became the mathematical, and vice versa. As another example of his fondness for

games and toys, Shannon was an avid chess player, and he would apply information theory

to estimate the number of chess games and positions.10 Not only that, he also built one of

the first chess-playing machines.

More importantly, though, others were finding Shannon’s ideas and adapting them for

their own games. It is impossible to overstate how many fields Shannon’s work has touched.

Information entropy—now sometimes called “Shannon entropy”—underpins the modern un-

derstanding of genetic variation, algorithmic randomness, and the nature of thermodynamic

entropy. Nowadays, information theory grows almost as fast as the Internet it helped create.

Even as Shannon grew older and suffered from the effects of Alzheimer’s disease, he

still retained his playful spirit. He loved to unicycle and to juggle—having actually written

an unpublished paper on the mathematics of juggling—and preserved these passions in his

later years.

Zurek gathered all the responses to his prompt—“the specter of information is haunting

sciences”—into a collection titled Complexity, Entropy, and the Physics of Information. The

book begins with a “manifesto”:

The specter of information is haunting sciences. Thermodynamics, much of the
foundation of statistical mechanics, the quantum theory of measurement, the
physics of computation, and many of the issues of the theory of dynamical sys-
tems, molecular biology, and genetics and computer science share information as
a common theme (Zurek vii).

More informally, information theory is now a very serious thing—and it actually always

was. According to Soni and Goodman, Shannon’s “style of work was characterized by such
10He estimated that there are about 10120 chess games, now known as Shannon’s number, and on the order

of 1043 possible chess positions.
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lightness and levity, in fact, that we can sometimes forget the depth and difficulty of the

problems he took on” (Soni and Goodman 277). But for Shannon, the problems of circuit

design and information theory were inspired by a unique kind of game and led to a unique

kind of game. Soni and Goodman say it best:

Maybe it is too much to presume that the character of an age bears some stamp
of the character of its founders; but it would be pleasant to think that so much of
what is essential to ours was conceived in the spirit of play (Soni and Goodman
xv).
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