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Introduction
The invention of the calculus was undoubtedly ohthe most important events in the
history of mathematics. However, the calculus eiMtbn and Leibniz, the independent creators
of the subject, is much different from the calcutisoday. The calculus of today is a calculus
based on functions, while the calculus of Newtod bBeibniz is a calculus based on geometry.
Also, contemporary calculus is much more logicaliyprous than at its time of invention. Itis
this level of rigor in the calculus that will begred. In the first century and a half of the
calculus, from the time of Newton and Leibniz thghuCauchy in the 1820s, the level of rigor in
the calculus was changing. From the attempts @ftbieto be rigorous, to Leibniz and his
general indifference to rigor, to the fairly unrigas work of eighteenth century mathematicians,
to the rigor standard setter Augustin-Louis Caudéngls of rigor in the calculus during this
period were anything but static. Below is a disowus of the differing levels of rigor in the
calculus from Newton and Leibniz to Cauchy, follal\®y a brief analysis of Cauchy’s work in
making the calculus rigorous. Forces that impemteghcouraged the level of rigor in the
calculus will be examined and contributions of induals who worked with calculus and rigor
will be noted.
Newton
While Newton never published a work which solagudsed on his version of the
calculus, chunks of his work with this disciplingpgared in “correspondence, the circulation of
manuscripts, and a few published pieces” (Caling@r). Pieces of Newton’s calculus appeared
in works published in 1693, 1707, and 1711. Howeaecording to Newton, he developed his

calculus based on the concept of fluxions arour&bi66. A possible explanation for this delay
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is offered below by Boyer. Nonetheless, usingehesy methods, Newton did things like find
the quadrature of a curve and develop a generdiireanial expansion.

As Calinger writes, “Essential to a mature calsutua satisfactory foundation” (611).
From the beginning, Newton was exploring elemeeltsted to rigor (611). Newton’s first
conception of the calculus used the concept ofit&simals, values that are greater than zero but
less than any quantity, as a basis for his metlhadet@rmining tangents. However, the use of
this concept, although producing generally correstilts, is rigorously troubling. When
differentiating, ignoring infinitesimal terms ledeMiton to recognizably correct solutions
(Kitcher, 475). However, logical inconsistenciespped up when one tried to define just how
“small” infinitesimals were. If they were non-zetben equations that had been developed
about the derivative would be false. If the wezeoz then the equations that had been developed
were “illformed” (477). Recognizing this, Newtordnn to look for another basis on which to
set his calculus.

Newton turned his focus to what he called therfyariand ultimate ratio” or “first and last
ratio”, which was a ratio of infinitesimals thastdted from the formula used to find the slope of
a tangent line (Calinger, 614). The formula used wessentially the same used today. While
this basis for the calculus was much more rigotbas infinitesimals, Newton left some
ambiguity as to what exactly he meant by thesesatSince Newton’s conception of the
calculus was in more geometric terms, his view k& “was bound up with geometric
intuitions which led him to make vague and ambigustatements” (Boyer, 197). This
ambiguity in Newton’s work would lead to much debbetween his successors about what he

actually meant.
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Overall, Newton seemed to be concerned with nbyt asing the calculus to solve
problems, but also with making sure his conceptibtine calculus was logically sound. Both
Newton’s actions and words lend credence to tl@a.idNewton began to move further away
from the use of infinitesimals in his calculus, ettally totally disavowing their use. Also, we
note that although Newton completed much of hiskwath the calculus in the years 1665 to
1676 none of it was published in that period. Baymmments that “it has been suggested that
Newton'’s long delay in publication of his...works the calculus was occasioned by the fact
that he was dissatisfied with the logical foundasiof the subject” (202). Finally, in his 1704
publication, Newton himself noted that “errors ace to be disregarded in mathematics, no
matter how small” (201). Thus, despite the leftoambiguity, Newton did make a conscious
effort to make his work rigorous in nature.

Leibniz

Leibniz invented the basic elements of his caleutuOctober and November of 1675.
Like Newton’s first conception of the calculus, heiz based his calculus on infinitesimals.
Unlike Newton, however, Leibniz sought the “algebation of infinitesimals”, rather than using
a purely geometric basis (Calinger, 622). Ouhgf early work came notation that is still used
in modern calculus. For what he called, at thegsgtion of the Bernoulli brothers, the
“integral” (Boyer, 205), Leibniz developed the fdiaui [x dxnotation. For the “differences”
(205) in the values of, Leibniz wrotedx. Leibniz, whom Calinger calls a “masterful natati
builder” (623), worked to perfect his symbols. Adpwith this, Leibniz established the rules for
the derivatives of products, quotients, and powasra/ell as defining the integral as a sum of an

infinite number of infinitely narrow rectangles.
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Though Leibniz provided much useful notation arehgnnew results to the calculus,
compared to Newton his work lacks in rigor. Thaglue to the fact that Leibniz never stopped
using infinitesimals. His refusal to stop usingniiesimals can be attributed to his attitude
toward the calculus. Unlike Newton, who believedWas only extending known methods to
produce new results, Leibniz realized that he waatmg a new discipline (Boyer, 208).
Leibniz believed that the new algebra based cadcliuwas developing had “outstripped the
methods of traditional mathematics” (Kitcher, 47@)gebra, he thought, had a wider scope than
the mathematics of the time. Thus, he rejectedd that algebraic reasonings are “only
shortcuts for the solution of arithmetical or getmeal problems” (479). Leibniz made it his
practice to promote his beliefs by trying to extatgebraic techniques first and worrying about
foundations and logical inconsistencies causedhfiyiiesimals later (479). More concerned
about his algorithmic method, which was providimpwn and correct results, Leibniz struck
back at those who assailed him for not being rigerenough by labeling them “over-precise”
critics, likening them to the ancient skeptics (Bny14).

Introduction to Eighteenth Century Mathematics

Before looking at the calculus of the eighteerghtary, it is helpful to look at the state in
which Newton and Leibniz left the calculus. Botvg to the calculus powerful methods that
could immediately be used to solve problems an@wercnew results. However, both, but
Leibniz more so than Newton, left foundational essunresolved. Thus, we should not be too
surprised to find “confusion among their followassto the nature of the subject” (Boyer, 221).
Although early attempts were made to rigorize thlewdus, significant headway was not made
until nearly the end of the century. We also seaggaphical divergence between the work of

Leibniz’s successors on the European continentNavaon’s successors in the British Isles.
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The Continental mathematicians paid much more @tteto problem solving and less attention
to rigor, in the same vein as the German Leibnlajevnathematicians in the British Isles took a
much harder look at foundations like their countayniNewton.

Rigor aside, the eighteenth century proved touoh sin innovative and important period
in the historical development of the sciences ithiatoften referred to as the ‘Scientific
Revolution’ (Grabiner [1974], 356). New mathemaliesults were coming at a fast and furious
pace. Galda notes that this period has sometiees ieferred to as the ‘heroic age’ of
mathematics. He, however, terms it the ‘age obwvjgnstead. He justifies his coinage of this
term by writing, “Although a few mathematicians wevorried about the foundations...most
plunged ahead...vigorously adding more and more $ltmthe edifices of mathematics” (135).

| mpediments to the Establishment of a Rigorous Calculus

Whatever one prefers to call this epoch in mathesiat cannot be disputed that many
important results, most concerning physical phemanwere developed during this period.
Most often, these results came from the use ofatmulus. As Grabiner [1974] writes, “The
calculus was an ideal instrument for deriving nesuits” (356). This philosophy, in which
results were highly sought, sometimes without éareigor, led to an environment about which
Grabiner [1974] writes, “The ends justified the m&a(356). As long as a result was reached,
little attention was paid to the level of rigor dga its derivation. In fact, lack of rigor was
sometimes a source of pride for the periods’ matimmans. Galda notes that Lacroix, in the
preface of one of his textbooks, boasted “suchlstiks as the Greeks worried about we no
longer need” (135). The time that would have beeressary to devise proofs of the results that

had been shown to work was seen as time that wirulgbtter spent developing new results.
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Other impediments to the move to add rigor to miathitics existed. One of these
impediments was the great reliance of mathemasansymbols. As Grabiner [1974] writes,
“Sometimes it seems to have been assumed thag¢ ifould just write down something which
was symbolically coherent, the truth of the statetweas guaranteed” (356). However, when
one is lacking rigorously defined concepts, as thascase with the calculus, the symbolism used
to represent these concepts may be faulty in naflines deep trust in symbolism came from the
successes of algebra. Symbolism had helped randadxplain relations that before were
difficult to make sense of (Grabiner [1974], 358hus, this often successful use of symbols
proved to dissuade mathematicians from proddingele@to the rigor that lay beneath the
manipulation of these notations. Since the symbeésned to provide correct answers, it did not
seem there was any reason to challenge the vatifittyeir usage in this manner.

Finally, a very practical impediment was that plgadhe calculus on a rigorous footing
was a very difficult task, surely not somethingttbauld be done in a short time. As Grabiner
[1981] writes,

To make a subject rigorous requires more thancjusbsing the appropriate

definitions for the basic concepts; it is necessdsy to be able to prove theorems

about these concepts. Developing the methods ddedthese proofs is seldom

merely a trivial consequence of choosing the ragfinitions; in fact, the prior

existence of the methods of proof is often necggasasrder to recognize suitable

definitions. A great deal of labor was requiredlévise the techniques and

concepts needed to establish a firm foundatiothediverse results and

applications of the calculus (16).

It is not an easy task to quickly and effectivediglaigor to subject when one has not been in the
habit of making sure the majority of their work rteeggorous standards. Couple this with the

lack of a generally accepted method with which care add rigor and there is an atmosphere in

which rigorous proofs of results are not likelyntave a very important role.
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Compounding the difficulties expounded upon abeas the fact that there was a major
shift in mathematics occurring in the eighteenthtesy. While it has been noted that basing the
calculus on the idea of limits is the rigorous cagithere was much confusion about how to
integrate this concept into a rigorous formatiornheaf calculus. This confusion arose because
there was “a lack of a clear distinction betweeadfions of geometry and those of arithmetic,
and...the absence of the formal idea of a functi®@dyer, 236). However, on the Continent
more so than in Britain, “there was a growing teraeto link the calculus with the formal
concept of a function, instead of with the intuité conceptions of geometry” (236).

Uncertainty about what the basis of the calculusld/be prolonged the process of developing a
rigorous footing for the calculus.
For ces Promoting Rigor in the Calculus

What, then, provided the impetus for the shifthie calculus from a results focused
science to a discipline based on the ideas of prand rigor? It is hard to pinpoint one specific
reason why this shift occurred. However, therenaaay contributing factors. One of these was
that the calculus was made rigorous to avoid amskcberrors. While this is a very sensible and
intuitive argument, it is actually less applicatilan it may seem at first glance. In fact, many
eighteenth-century results were accurate, evergththey had little rigorous background to
prove they were correct. The reasons for this avgar accuracy according to Grabiner [1974]
are as follows,

First, some results could be verified numericadlyeven experimentally; thus

their validity could be checked without a rigordagsis. Second, and even more

important, eighteenth-century mathematicians haal@ost unerring intuition.

Though they were not guided by rigorous definitidhgy nevertheless had a

deep understanding of the properties of the basicepts of analysis. This

conclusion is supported by the fact that many aamfr shaky eighteenth-century

arguments can be salvaged, and made rigorous penyspecifying hypothesis
(358).
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This is not to say, however, that all results foumthe eighteenth-century would later be found
correct once calculus concepts were placed oroeaoug basis. There were results that were
found to be incorrect (such as the sum of the sdrg+1-1+1-1.... does not equal 1, -1, .5, or
any value for that matter), and placing calculuscepts on a rigorous footing allowed for the
necessary corrections to be made. Work in thesakmultivariable functions, complex
functions, and trigonometric series (fields in whibe truth of plausible conjectures is hard to
ascertain), may have helped draw attention to ¢eel o place results on a rigorous foundation
(Grabiner [1974], 358).

Another possible motivation for turning to rigorght have been the desire to generalize
the multitude of results that had been found. Maasylts had been discovered, but they were
fairly loosely connected in nature. Rigor couldveeto unify, prove, and generalize results
(Grabiner [1974], 358). One may plausibly conjeetilnat a time of reflection and organization
could be expected to follow a period of exploratidks Kleiner argues, this shift from vigorous
exploration to rigorous organization could be sagi “natural” process (298). He explains:
“After close to 200 years of vigorous growth witttlé thought given to foundations, such
foundations as did exist were ripe for reevaluatiad reformulation” (298).

A factor that should be mentioned as a possibdagation for a shift to increased rigor
in mathematics is the Greek tradition of rigor @ogetry. As Grabiner [1974] writes,
“Everybody from the Greeks on knew that mathematias supposed to be rigorous” (359). She
also notes [1981] that Cauchy stated that the Gmestkods were his model of rigor (30). If this
was not enough to get mathematicians to more sdyiconsider the issue of rigor, George
Berkeley, Bishop of Cloyne, attacked the calcutu$734, “on the perfectly valid grounds that it

was not rigorous the way mathematics was suppaskd’t(Grabiner [1974], 359). Berkeley
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charged, inThe Analyst, or a Discourse Addressed to an Infillhematicianalthough many
of the results found by using the calculus wereemir the methods by which they were obtained
were fundamentally unsound (Grabiner [1981], Z4& mocked Newton'’s so called ‘vanishing
increments’ by writing, “And what are these ...vamghincrements? They are neither finite
guantities, nor quantities infinitely small, nort ymthing. May we not call them the ghosts of
departed quantities?” (Grabiner [1974], 359). WImither the Greek tradition of rigor nor the
attack by Bishop Berkeley alone is likely to haa@iged the shift to more rigor in mathematics,
both got mathematicians thinking about rigor. Béely’s criticisms were especially taken to
heart by Lagrange whose influence on the shiftrwoge rigorous footing is discussed below.

Another influential factor in the move towardsaign analysis was the move of
mathematicians from their positions of attachmernbiyal courts to teaching positions at newly
emerging institutions of higher education. As K writes, “Most mathematicians since the
French Revolution earned their livelihood by teaghi(297). In this role, mathematicians were
apt to look much more closely at the foundationthefr work (Grabiner [1974], 360). Kleiner
discusses this shift to an increased interestundations: “Mathematicians presumably think
through the fundamental concepts of the subjegt éine teaching much more carefully when
writing for students than when writing for othedleagues” (298). Grabiner [1974] relates this
idea to a classroom situation when she writes,

Teaching always makes the teacher think careflibuaithe basis for a subject.

A mathematician could understand enough about eemirto use it, and could

rely on the insight he had gained through his depee. But this does not work

with freshmen, even in the eighteenth-century. iBegrs will not accept being

told, “After you have worked with this concept three years, you'll understand

it” (360).
Grabiner [1974] notes that before the establishraéstientific journals, most work on logical

foundations appeared in texts and courses of kestuhlso, even after analysis did take to the
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forefront in mathematics, most new breakthrouglhgirated in course lectures (360). These
ideas and facts greatly contribute to the argurtiettthe move of mathematicians into the
classroom greatly promoted a move to more rigadhéncalculus.

Finally, if we were to give one eighteenth centorgthematician credit for helping move
the calculus to a more rigorous footing, that draaiuld unquestionably go to Lagrange. As
Grabiner [1981] writes, Lagrange was “the first arapathematician to treat the foundations of
the calculus as a serious mathematical problen). (Bagrange’s repeated inquiries into the
rigorous foundations of the calculus had much tevdb his belief in the validity of the
criticisms of Berkeley (37). In fact, Lagrangeaatdisplayed a skeptical attitude toward the
infinitely small, echoing Berkeley” (Boyer, 251Because of this, Lagrange advocated a
movement towards rigor in many ways, two of whidh lae mentioned below: the proposal of
a prize problem to the Berlin Academy concernirajlg the calculus on a rigorous footing,
and his publishing of an influential work on thépgct in the late 1700s (Grabiner [1981], 37).

In 1784, at the suggestion of Lagrange, theiBétademy proposed a prize problem of
constructing the rigorous foundations of the calsulWhile this was a valiant attempt at
soliciting a solution, the material submitted te ttontest did not fit what the Academy wanted.
The unrealized goal was to find “a clear and pestheory of what is callelhfinity in
mathematics” (Grabiner [1981], 41). Lagrange drmedther judges held the submissions to an
extremely high standard and found themselves d@apga with the work submitted. Instead of
placing the calculus on a rigorous footing, mosthef contributions had tried to find some ad
hoc explanatory principle such as compensationmrof® Also, the works had not justified, by
rigorous proof, the wealth of known results. Thamng submission, made by Simon I'Huilier,

was, as Grabiner [1981] writes, “the best of a lo&id(42).
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Despite few worthwhile results from the Berlingmioffering, the competition put on the
table the idea that the calculus needed an infusfioigor to advance and thrive. Lagrange took
it upon himself to work on the problem he proposed1797, Lagrange publish&bnctions
analytiquesin which he claimed to have solved the problerpla€ing the calculus on a
rigorous basis. Lagrange’s book differed fromieadttempts in that he did more than just give
definitions to basic concepts. He used these itiefis to derive proofs of the major known
results (Grabiner [1981], 37). Although his defom of f(x) as the coefficient di in the Taylor
series expansion &fx+h) is not accepted by modern mathematicians, his wakof great
importance (Grabiner [1974], 361). Among otheng}si, this work entrenched rigor as an
important area of mathematics, developed new tedsito carry out rigorous analysis, and set
an example of how to thoroughly prove known resoltéhe calculus from definitions (Grabiner
[1981], 37).

Infinite Series | ssues

As evidenced by the work of Lagrange and similathmdologies put forth by
Condorcet, Arbogast, and Servois among others eedlmt the issue of whether to base the
calculus on functions or on geometry had firmlyrbsettled in favor of functions by the end of
the century (Boyer, 263). More attention could rteevurned to the rigorization of the calculus
based on the function concept. Lagrange’s worl désnonstrated another motivation for a
move towards stronger foundations, namely, theegaprtation of functions as series. In the
opinion of Kitcher [1981], it is this work with infite series that was “the impetus for making the
calculus rigorous” (488).

However, Lagrange was not the only mathemati@ause infinite series in their work.

Fourier, in 1807, presented to the Institut de Eeaawork in which he claimed that any even
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function could be made into a “possibly infinitexsf cosines, what we today call a Fourier
series” (Bressoud, 3). This result, which camedfufourier’s investigations in to the flow of
heat in a very long and thin rectangular plateaariha, proved to be very controversial as it
“contradicted the established wisdom about thereattifunctions” (3). Fourier’'s work raised
issues that deeply challenged how the conceptseatdiculus had been formulated by asserting
that the shape of a function between two valuesdidletermine the behavior of the function
over the whole domain (56). The infinite seriepansion of a function by Fourier and
Lagrange, along with the work of Euler covered begled to work by Cauchy to add rigor to the
calculus in hopes of finding out how much valicityisted in these ideas.

Before Fourier and Lagrange, Euler had worked wifimite series in the mid-eighteenth
century. Often, using methods Kline describesaakstoc”, Euler discovered many important
results concerning the summation of infinite seriBgspite using “efforts to justify [his] work,
which, we can now appraise with the advantagemddight, often border on the incredible”
(307), Euler had an “uncanny” (307) ability to ckeanethods that led to correct results. In his
work, Euler often used things like divergent senelsich without an agreed upon method of
usage prove to be unrigorous, with few qualms. nBtieugh the use of these series provided
him with logical inconsistencies in many situatiphs often ignored these and instead focused
on when the use of divergent series provided hith worrect results (Kitcher, 488).

As noted above, the fundamental difference betvileenvork of Lagrange and Fourier
dealt with how a function behaved in a definedmvaeas compared to how it behaved over its
entire domain. For Euler, “the shape of a funcbhetweerx=0 andx=| determined that
function everywhere” (Bressoud, 56). Lagrangethanlthis idea; his Taylor series

representation “implie[d] that the values of a filoie and all of its derivatives at one point



Collingwood 14

completely determine the function at every valug’qb6). Fourier, however, argued that the
behavior of a function at one point or in an intrdid not necessarily determine how the
function behaved elsewhere. At first, Lagrangeitia there must surely have been an error in
Fourier's work; possibly that the cosine functiahd not converge like Fourier claimed they did.
However, that issue was resolved in Fourier’'s fauat the larger questions of the rigorous way
to define a function, an infinite series, and awgive became more important than ever (57).

Despite the fact that Lagrange and Fourier had to infuse their work with rigor and
that Euler came up with many correct results, Caulith not feel comfortable with the
contradictory results and the level of rigor preaddoy these mathematicians. However, without
an accepted method of rigorization to measure tressdts against, there was little Cauchy could
do to validate his lack of comfort. Kitcher explaithe situation well when he writes:
“Cauchy’s research into the representation of fimmstby infinite series was crippled by the lack
of a reliable procedure for using infinite serigpr@ssions” (489). Thus, Cauchy took to the task
of adding rigor to the calculus in an attempt tkta the infinite series questions and other
general questions of rigor in analysis.

Cauchy

While Augustin-Louis Cauchy published a prodigi@msount of work in a variety of
disciplines, it was his work in adding rigor to ttedculus that stands out as one of his most
important accomplishments. In three works publisinethe 1820sCours d’analys€1821),
Resume des lecons sur le calcul infinitesi(@8R3), and_econs sur le calcul differenti&l829),
Cauchy moved the bar of rigor to an unprecedenégghh He rigorized the notions of such

fundamental topics as limits, continuity, converggrthe derivative, and the integral. The result
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of this, Boyer writes, is that “Cauchy did morertanyone else to impress upon the subject the
character which it bears at the present time” (271)

The success Cauchy enjoyed in completing the wh#dtmore rigorous calculus,
according to Grabiner [1981], is due to Cauchy’sudtaneous realization of two central
concepts. The first was that “the eighteenth-agritmit concept could be understood in terms
of inequalities” (77). The second, and accordm{tabiner, more important, was that prior
realization set the stage for “all of the calculag be based on limits” (77). These realizations
transformed previous results on such things asraamis functions, infinite series, derivatives,
and integrals into modified theorems in this negorous analysis.

In choosing the method of basing the calculusherelgebra of inequalities and on limits,
Cauchy departed from the previously mentioned vadlkagrange and Fourier. As Katz writes
Cauchy did not like the use of infinite series pated by both Lagrange and Fourier: “Cauchy
in fact was not satisfied with what he believedevenfounded manipulations of algebraic
expressions, especially infinitely long ones. Huopres for these expressions were only true for
certain values, those values for which the infisgeies was convergent” (707). Using this
calculus of limits promoted by such eighteenth sgnimathematicians as Jean d’Alembert,
Cauchy developed a method of adding rigor whodaente has continued to this day.

In looking at how Cauchy added rigor to the cotegp the limit, convergence,
continuity, the derivative, and the integral, we segeneral methodology emerge. First, Cauchy
would take to the task of developing a definitibattwas rigorous in nature. In doing this, much
attention was paid to detail. For example withdefinition of a limit given in th&€ours

When the successively attributed values of oneabéiindefinitely approach a

fixed value, finishing by differing from that fixedhlue by as little as desired, that
fixed value is called thimit of all the others (Grabiner [1978], 382).
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Cauchy appealed to “the notions of number, variadote function, rather than to the intuitions
of geometry and dynamics” (Boyer, 273). Thesenilghins, founded on the more rigorous
footings, served as the basis for the rest of Cdaahork with the calculus.

Definitions in hand, Cauchy proceeded to fashiwmotems for the calculus. However,
he did not stop at the development of these thesr@auchy devised rigorous proofs for each
theorem. Key to these proofs were his newly foated definitions. Major theorems that
Cauchy presented and proved using his rigorousitiefis include the Fundamental Theorem of
Calculus (Katz, 719) and the Mean Value TheorenDienvatives (716). Especially in the cases
of derivatives and integrals, it was these theorfraswere extremely important for the
advancement of the calculus. As Grabiner [1978esr “There is more to the rigorous theory
of the derivative than a mere definition. The neatltical value of Cauchy’s definition stems
not from its logical correctness alone, but froma ginoofs of the theorems to which Cauchy
applied it” (389). Thus, the method of providingarous definitions and using them in rigorous
proofs of theorems proved to be a very fruitful hoet when used by Cauchy to add rigor to the
calculus.

In looking at what Cauchy’s work meant to the obls, Grabiner [1981] writes,
“Cauchy’s work established a new way of lookinghegt concepts of calculus. As a result, the
subject was transformed from a collection of powleriethods and useful results into a
mathematical discipline based on clear definitiand rigorous proofs” (164). By providing and
insisting on rigor in the calculus, Cauchy’s wodghan to shift mathematics into a much more
rigorous discipline, one more reminiscent of thehamatics of the Greeks than the mathematics

of the eighteenth century.
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Conclusion

Looking at the level of rigor in the calculus frotewton and Leibniz through Cauchy,
we see a period in which the level of rigor ebbed tiowed a considerable amount. From the
rigorously minded Newton to the inventive Eulethe standard setting Cauchy, we see three
different mathematicians of the era holding theneto three different rigorous standards.
Though the rigorous standards of each differedeqeonsiderably, it is undeniable that each of
them made indelible contributions to the calcultibis flow of rigor provided the calculus with
a unique and varied set of results that establigheesithe premier mathematical subject. Thus,
while this paper examines the level of rigor in tadculus, it does not aim to condemn the less
rigorous work of many eighteenth century mathenaig Rather, it seeks to trace the use of
rigor in the calculus and explain why it changedt @sd. While being rigorous is viewed as
paramount in modern mathematics, we see from thelojgment of the calculus that at times
using lower levels rigor does not lead to the itee decline of mathematics as a logically
sound science. Kitcher, echoing this view writ¥8ho needs mathematical rigor? Some
mathematicians at some times, but by no meansaahematicians at all times” (490). In

looking at the historical development of rigor Imetcalculus, this statement rings quite true.
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