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Joseph-Louis Lagrange (1736-1813) was an Italian-born mathematician of French descent. He
succeeded Leonhard Euler (1707-1783) as Director of Mathematics at the Berlin Academy, a post
that Lagrange then held for 20 years. Lagrange left Berlin in 1787 for a post at the Académie des
Sciences in Paris. Unlike Louis XVI, King of France, who offered him the post, Lagrange kept his
head down (and hence on!) during the Reign of Terror. In 1794, Lagrange became one of the original
professors at the famous Ecole Polytechnique where he continued to produce important mathematics.!
Near the end of his life, Napoleon honored Lagrange for his life’s work by naming him to the Legion
of Honour.

Perhaps Lagrange’s largest body of mathematical work? was in the area of analysis. He also
made contributions to the theory of equations, which influenced the development of group theory
and Galois theory.® In this project, we’ll study one of his many contributions to number theory
through excerpts from a paper that Lagrange wrote early in his tenure in Berlin [Lagrange, 1771].
Despite its unremarkable title, “Démonstration d’'un Théoreme Nouveau Concernant les Nombres
Premiers” (“Proof of a New Theorem Concerning Prime Numbers”), its content is quite remarkable.
As Lagrange explained:*

XXX XX XXX X DX XXX X XXX X X XXX X XXX XX XXX X DX XXX X OXOXIXIXO

| have just found, in an excellent work of Mr. Waring that | recently received, a beautiful
arithmetic® theorem ... .

Mr. Waring honors Mr. John Wilson with this theorem, but he doesn't give a proof, and
he even seems to imply that no one has yet found a proof; at least it seems he considers
finding the proof would be extremely difficult ... . He [Waring] adds “Proofs of propositions
of this kind will be all the more difficult, because no notation can be imagined by which to
express a prime number.”

XXX XX XXX XX XXX X XXX XX XXX X XXX XX XXX X XXX XX XXX IXO

*Department of Mathematics, Fort Lewis College, Durango, CO, 81301; lienert_c@fortlewis.edu.

!See https://mathshistory.st-andrews.ac.uk/Biographies/Lagrange/ for comment on Lagrange’s teaching
skills, as well as more information about his life and works.

2Lagrange also made important contributions to the study of astronomy, the stability of the solar system, mechanics,
dynamics, and fluid mechanics.

3The project [Barnett, 2017] presents Lagrange’s work in the theory of equations.

4All translations of Lagrange’s paper in this project were prepared by the project author.

®Today, we would say “number theoretic” where Lagrange wrote “arithmetic.”
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Edward Waring (1736-1798) was a Lucasian Chair of Mathematics at St. John’s College, Cam-
bridge. John Wilson (1741-1793) was a student of Waring.® While Lagrange gave fair credit to
Waring and Wilson, he also seems to have been proud of his proof. In fact, Lagrange not only
gave the first published proof of what today is known as Wilson’s Theorem in this paper, but he
demonstrated its mathematical connection with work of Pierre de Fermat (1601-1665), stated and
proved the converse of Wilson’s claim, and even provided a second proof of Wilson’s Theorem. We’ll
see how he developed the first two of these results in this project, and provide pointers to related
projects that investigate the others in our conclusion.

1 Theorem Statement’
Lagrange began with a statement of the theorem, known today as Wilson’s Theorem, that he had
found in Waring’s work:
If n is any prime number, the number
1-2:3-4-5---(n=1)+1
will always be divisible by n;

that is, the continual product of numbers 1,2, 3, ... until n — 1 inclusively, being augmented
by one, will be divisible by n, or in other words, if one divides this product by the prime
number n, one will have —1, or equivalently, n — 1 as remainder.

XXX XXX XXX XX XXX XX XXX XXX XX DX XX XXX XX XXX XXX IXTXO

Let’s start with some of the computations that Wilson must have performed:

Verify Wilson’s Theorem for n =2, n =5, and n = 7.

It would be interesting to know how many values of n Wilson checked. For n = 17, the number
to check has 14 digits.® Lagrange recorded the result through n = 13 in his paper, finding for that
value that 1-2-3-4-5-6-7-8-9-10-11-12+1 = 13 - 36846277.

When initially thinking about the problem statement it’s also natural to wonder if the statement
is, in fact, true for any positive integer n.

If you remove the condition that n be prime, is the theorem true? Justify your answer.

Why do you think that Lagrange found this to be a “beautiful arithmetic theorem”?
What purpose do you think it could serve in number theory? Does it remind you of
other theorems you have seen in number theory, or mathematics more generally?

5See https://mathshistory.st-andrews.ac.uk/ for some interesting information about Waring and Wilson.

"Our section organization in the rest of this project follows that of Lagrange’s paper.

8Optional Task: Verify that 17 divides 16!+ 1, but without using a calculator or other modern computational device.
One way to do this is to start with Lagrange’s result for 12! 4+ 1 as a short cut to calculating 16! + 1, then divide by 17.
Although this project intentionally avoids modular arithmetic notation since Lagrange would not have used it either,
another way to do this would be to use modular arithmetic to show that 16! = —1 (mod 17). If you are familiar with
modular arithmetic, try doing it both ways to experience the power of “good” modular notation.
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2 A Lemma

Today, a proof of Wilson’s Theorem is typically given using a result known as Fermat’s Little Theo-
rem. Lagrange presented a different proof, and he explained why, as we’ll see.

Lagrange started his proof with a computation that he labeled a lemma. His organization was,
perhaps, more natural than the way mathematical results are often presented. Modern textbooks
often present the statement of a theorem or lemma as a finished result before the computation that
provided the insight. We'll follow Lagrange’s organization: we’ll start with the computation and
look at the statement of the lemma later. The initial setup of Lagrange’s computation was:

Given the continual product:
(x+D(z+2)(z+3)(x+4) - (x+n—1),

we propose to expand it according to the powers of .
We see that we'll have

(x+1)(x+2)(x+3)(x+4)---(r+n—-1)
:‘,L,nfl_i_A/xan+A//xn73+A//ll_n74+'_._i_A(nfl) (1)

and in order to easily determine the coefficients A’, A”, A", ... we note that the preceding
equation above is an identity [and] will equally remain [true] in putting there z 4+ 1 for z;
which is why we will also have:

(x+2)(z+3)(x+4)(z+5) - (x+n)
_ (x—i—l)n_l—|—A/(.’I}+1)n_2+A”(.%'+1)n_3—|—A”/(.’E—|—1)n_4—|—"'+A(n_1) (2)

Pay careful attention to what Lagrange did! In (1), Lagrange wrote the form of the expansion
of the product according to powers of x. In (2), it’s tempting to think he similarly expanded the
product on the left side of the equality. That’s not what happened, though.

What did Lagrange do? How is the right side of (2) similar to that of (1)7?

Lagrange continued:

. multiplying (2) by  + 1, and then comparing it to (1) multiplied by =+ n we'll have ...

XXX XX XXX X X XXX X XXX X X XXX X XXX XX XXX X DX XXX X XXX X0

If you do what Lagrange suggested in this excerpt to the left sides of (1) and (2), how
do the left sides of the equations that you obtain compare?

Perform the same operations to the right sides of (1) and (2) and write down the
identity that results. You don’t need to “simplify” (yet).
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According to Lagrange, you should have:

(x+n) (wnfl+A/xnf2+A/lmn73+A///xn74+_”_+_A(n71))

:(x_i_1)71_*_14/(33_*_1)7171_i_fl//(m_’_l)an_i_A///(%,_i_1)71—3_i_.___i_A(nfl)@,_’_l)7 (3)
that is, expanding the terms and ordering them with respect to [powers of] z,

.’En—l—(n—I—A,)LL‘n_l—|—(nA/—I—A”)QZn_2+(nA,/+A,/,):En_3+"-

=2+ (n+ A" + 71@(112— D +(n—-1)A"+ A”} "2
N [n(n —21?én—2) N (n—1)2(n—2)A,+(n_2)A,,+A,,,] g (4)

Task 7| It is relatively easy to see how to obtain the left side of (4). Give a brief explanation.

It takes a little more work to be convinced that the right side of (4) is correct, and to see where

the rational expressions in n come from. To expand the right side of (3) we need a simple case of

the Binomial Theorem:?

-1 —1)(n—2
x+1)”:x”+nx”‘1+n(n2 )x”—2+n(n 2)(3n )x”_3+---+nx+1.

I —~

Task 8| Expand the right side of (3) for n = 5, and collect like terms according to powers
of x. Resist the temptation to simplify the fractions that appear as coefficients. For

example, leave % as it is instead of simplifying to 10.

Task 9| For a general n, what would the next term in (4) be?

Task 10| For n =5, use (4) to compute the values for A’; A”, A", A”" by comparing coefficients
of the powers of .

Task 11 | Check your result for Task 10 by expanding (z + 1)(z + 2)(z + 3)(z + 4).

9We write the Binomial Theorem in the format Lagrange would have known it. Modern binomial coefficient
notation was introduced by the Austrian mathematician Andreas von Ettingshausen (1796-1898) in 1826. See
https://mathshistory.st-andrews.ac.uk/Miller/mathsym/stat/.
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Lagrange provided the result you found in Task 10 in general. This general result is the lemma
that he set out to prove in this section of his paper, which he stated as follows:

Thus, since this equation (4) is an identity, comparing term by term, we'll have:

n+ A =n+ A4,

nd + A = ”<”2—1) F(n—1A+ A,
nA” + A" = n(n _21)(3n -2) + (n— 1)2(n - Z)A/ F(n—2)A" + A", ..
from which we obtain:
A = n(n—1)
2 b
gy =D =2)  (-Dn-2)
2-3 2
sapr = =D == | (=D (=D

and so forth.

XXX XX XXX XX XXX X XXX XX XXX DX XXX XX XXX XX XXX DX XXX IXO

Task 12 || What is the next line in the “and so forth”?

And more importantly:

Task 13| What is the last line in the “and so forth”? Hint: For what value of n would your
answer to Task 12 be the last line, and for that value of n how does that line simplify?

It’s worth pausing for a moment to appreciate what Lagrange did to obtain the lemma stated in
this last excerpt. He considered a simple product (x+1)(z+2)--- (x+mn— 1) from two perspectives:
at x and at x+1. By comparing the view from these two perspectives he was able to develop a system
of equations that allowed the iterative computation of the coefficients of the expansion. The form of
these iterative expressions for A’, A”,... were what allowed Lagrange to make his final conclusions,
as we’ll see.

A second strategy Lagrange employed was to move the question into a “larger” arena. The
statement of Wilson’s Theorem is about positive integers. Lagrange attacked the problem not in the
ring of integers but in the ring of polynomials.!”

107 agrange would not have thought about the settings as rings since that concept was not yet developed. He would
have used the term Theory of Equations for ring of polynomials.
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3 A Corollary to the Lemma

At this point in his paper, Lagrange had developed formulas for the coefficients of the powers of x
in the expansion of
+1D(z+2)(x+3) - (z+n-—1).

Remember, n is a prime number.
He next used these formulas to obtain a useful corollary.

It is clear, by the theory of equations, that the coefficients A’, A” A" ... are nothing
other than sums of natural numbers 1,2,3,...n — 1 inclusively, products of these numbers
in pairs, triples, etc.; in such a way that the last coefficient A"~ will equal the product

1-2-3-4---(n—1); thus all the numbers A’, A” A" ... will necessarily be integers.

In the first part of this statement Lagrange essentially asserted that a product of polynomials
with integer coefficients has integer coefficients; in other words, all of the coefficients A’, A”,... are
integers.

In the second part of this statement Lagrange made a specific observation about the constant

(n—1)

coefficient, A , which turned out to be particularly important.

Task 14 | Explain why A®1) =1.2.3-4... (n—1). Hint: Go back to equation (1) in the setup
of the lemma in Section 2.

4 The Main Theorem

Next, Lagrange (re-)stated his main theorem and provided a proof:

XXX XX XXX X X XXX X XXX X X XXX X X XXX X XXX X DX XXX X OXOXIXIXO

With the same notation as in the preceding lemma, | say that, if n is a prime number, the
numbers A’ A” A", ..., A""=2) inclusively are all divisible by n, and that the last number
A(=1) is divisible by n, having been augmented by one.

XXX XX XXX X XXX X XXX X X XXX X XXX X X XXX X XXX X OXOXIXIXO

Task 15| Which part of this statement is Wilson’s Theorem?
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We'll follow Lagrange’s proof step by step.

We know the expressions

nn—1) n(n—1)(n—2) (n—=1)(n—2) (n—1)(n—2)(n—23)
5 5.3 yeens 5 , 53 feen

always denote whole numbers, as long as n is a whole number; since they are the coefficients
of a binomial raised to the power n, or n — 1, or etc.

Lagrange explained that these expressions are the coefficients obtained when expanding an ex-
pression like (a + b)™.

Task 16 | Confirm that the coefficients of the expansion of (a + b)* are of the form given in the
excerpt above.

Task 17 | Explain why the coefficients of (a + b)" (or, equivalently, (a + b)"~1) must always be

whole numbers.
Lagrange continued:
XXX XXX DXDX XXX XX XX XXX XXX XXX DXDXDX XXX XXX X XXX XXX XX

Further, it is clear that, if n is a prime number, the numbers

nn—1) n(n—1)(n—2)
1-2 7 1-2-3 T (6)

will all be divisible by n, with the only exception of the last number

R "

which is equal to one; because it is seen that the numerator of each of these numbers is
divisible by n, and that the denominator is not, as long as n is prime; from which it follows
that after having divided the numerator by the denominator, the factor of n will remain in
the quotient.

XXX XX XXX X X XXX X XXX X X XXX X X XXX DX XXX X DX XXX X XXX X0

Task 18| Why is it true that the denominators of (6) are not divisible by n? Hint: Remember
that n is prime here.

Task 19 | The “last number” (7) appears in your answer to Task 13. Which term in your answer
is it?
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Finally, Lagrange finished the proof of Wilson’s Theorem in two steps:

XXX XX XXX XX XXX X XXX XX XXX DX XXX XX XXX X XXX XX XXX IXO

From there and from the formulas in the preceding lemma it is easy to conclude: first:
That A’ will be divisible by n, that 2A” will also, and the same of 34", 4AWY ... until
(n —2)A(™=2); and that as a consequence the numbers A’, A” A" ... A("=2) that we have
seen must always be integers, will be themselves divisible by n, at least when n is prime.

Task 20 | Explain why each of A’,24”,3A" ... (n —2)A"2) is divisible by n. Lagrange gave
a hint: start with A’, etc.

Task 21| Why does this imply that, in fact, each of A, A”, A", ..., A2 is divisible by n?

Task 22 | The last part is up to you: Use Task 13 to solve for A1) 4+ 1 and complete the

(n—1)

argument “that the last number A is divisible by n having been augmented by one.”

And thus Lagrange proved the statement of Wilson as reported by Waring!

5 A Second Corollary

The story didn’t end with Lagrange’s proof of Wilson’s Theorem, however. Lagrange also noticed
a connection between his proof and “the famous Theorem of Fermat for which Euler has given several
proofs.” The famous theorem that Lagrange had in mind here is today often called Fermat’s Little
Theorem and states the following:

Fermat’s Little Theorem.
If p is prime, and a is relatively prime to p, then p divides a?~! — 1.

In short, Lagrange showed that Fermat’s Little Theorem follows from his proof of Wilson’s Theorem
as a corollary. We’ll again follow his proof step by step to see how he did this.
Lagrange started his proof of this corollary with:

In general, it follows from the formula (1) that for any integer x
e+ D)(@+2)(@+3)-(z+n-1) -2 41 (8)

will always be divisible by n as long as n is a prime number.

XXX XX XXX XX XXX X XXX XX XXX X DX XXX X XXX X XXX XX OXOXIXIXO

Task 23 | Explain how (1) and the results about the coefficients A/, A” ... A=) show this
statement.
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Lagrange then considered two cases: when x is divisible by n, and when it is not. First:

XXX XX XXX XX XXX X XXX XX XXX XX XXX DX XXX XX XXX X XXX IXO

If 27~ is divisible by n, which can only happen when z is zero or a multiple of n, the
number

(+1)(z+2)(x+3)---(x+n—-1)+1

will always be divisible by n, which gives the Theorem of Mr. Wilson by making z = 0.

Here, Lagrange stated, a second time, the result of Wilson’s Theorem.

Task 24 | Lagrange didn’t explain. How does this follow from (8)7

The second, perhaps more interesting, case is when z is not divisible by n:

If 2 is neither zero nor divisible by n, which happens when = = un + p, where p is any
integer less than n, it is clear that one of the numbers

z+1lL,z+2,24+3,..., 2 +n—1
will necessarily be divisible by n, and the product
(z+1)(z+2)(z+3)---(xr+n—1)

will as a consequence always be divisible by n; thus —z" 1 41, or rather "~ — 1 will in this
case always be divisible by n; which is the famous theorem of Fermat for which Mr. Euler
has given several proofs in the Commentarii academiae scientiarum Petropolitanae. Ours,
as one sees, has the advantage of showing the connection and the mutual dependence of the
two Theorems.

Task 25| Why did Lagrange think his proof was better than those of Euler?
Let’s follow the steps in Lagrange’s proof:

Task 26 || Lagrange was a little careless when he wrote “... where p is any integer less than n ...
” Give an inequality for the integer values of p that Lagrange intended.

Task 27 || What theorem allowed Lagrange to claim “x = un + p, where p is any integer less than
n???
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Task 28 || Why must one of the numbers

z+1lL,z+2,24+3,....,.c+n—1
be divisible by n?

Task 29 || Make the final argument explicit: how does the statement that n divides z"~ ! — 1
follow from the divisibility statement about (8)?

Thus, Lagrange showed that both Wilson’s Theorem and Fermat’s Little Theorem follow, by
cases, from one and the same divisibility statement.

6 Conclusion

In this project, we have studied Lagrange’s proof of Wilson’s Theorem and also Lagrange’s demon-
stration that Fermat’s Little Theorem follows from the same divisibility statement that he used to
prove Wilson’s Theorem. We’ll conclude with some brief comments about Fermat’s Little Theorem,
the importance of both Wilson’s and Fermat’s Little Theorem to mathematics, and a teaser about
the other results in Lagrange’s paper.

6.1 Fermat and Fermat-Euler

Lagrange was interested in Fermat’s Little Theorem, which we re-state here:

Fermat’s Little Theorem.
If p is prime and a is relatively prime to p, then p divides a?~! — 1.

A more general theorem, known as the Fermat-Euler Theorem, states the following:

Fermat-Euler Theorem.
If @ and m are relatively prime, then m divides a®™ — 1, where o(m) is
the number of positive integers 0 < n < m that are relatively prime to m.

Task 30 || Explain why the Fermat-Euler Theorem implies Fermat’s Little Theorem.

Fermat stated his theorem in 1640. Euler provided the first published proof in 1736,"' and the
generalization in 1760. Here are two suggestions for learning more about the work of Fermat and
Euler:

o Study the project “Primes, Factoring, and Divisibility” [Klyve, 2017] which explores Euler’s first
paper on number theory, entitled “Observations on a theorem of Fermat and others concerned
with prime numbers” [Euler, 1738].

e Really get your hands dirty with one of Euler’s proofs. Dickson’s History of the Theory of
Numbers [Dickson, 1919] outlines three of Euler’s proofs and indicates where they can be found.
(Finding primary sources is part of the fun.) You may find “The Euler Archive” helpful.!?

" Gottfried Wilhelm Leibniz (1646-1716) was aware of Fermat’s result even earlier and perhaps had a proof, but
didn’t publish one.
2http://eulerarchive.maa.org/

“Lagrange’s Work on Wilson’s Theorem” 10
MAA Convergence (October 2023)


http://eulerarchive.maa.org/
https://maa.org/press/periodicals/convergence/lagrange-s-work-on-wilson-s-theorem-three-mini-primary-source-projects-for-number-theory-students

6.2 Connections

You might have noticed that “Wilson’s Theorem” was proved by Lagrange, but never by Wilson
(or Waring). Similarly, “Fermat’s Little Theorem” was proved by Euler, and later by Lagrange,
but never by Fermat. The development of mathematics is rarely about a single individual. The
development and the naming of the results studied in this project illustrates this. If you do a quick
Google search you’ll also discover that neither Euler nor Lagrange were the last to contribute proofs of
these theorems. They certainly weren’t the last to use the results of these theorems to produce other
theorems. While Euler and Lagrange were certainly superstars in this development, the importance,
and even existence, of their results depended on mathematicians that came both before and after.

Task 31 || Look in a modern number theory or abstract algebra textbook and find one result that
depends on Wilson’s Theorem and one that depends on Fermat’s Little Theorem.

6.3 And more ...

As noted in the introduction of this project, Lagrange included several other results in his paper: a
proof of the converse of Wilson’s Theorem, an alternate proof of Wilson’s Theorem that started with
Fermat’s Little Theorem, and a discussion about primes in arithmetic series. The first two results are
studied in the companions to this project, which are entitled “Lagrange’s Proof of the Converse of
Wilson’s Theorem” [Lienert, 2023a] and “Lagrange’s Alternate Proof of Wilson’s Theorem” [Lienert,
2023b]. And, for those who read French, Lagrange’s discussion about primes in arithmetic series is
found in Remark III of his paper [Lagrange, 1771].
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Notes to Instructors
PSP Content: Topics and Goals

This Primary Source Project (PSP) is intended for an introductory number theory course. It could
also be used in an Introduction to Proofs course that included some treatment of number theory.
It presents Lagrange’s proof of Wilson’s Theorem. Modern textbooks typically present a proof
using Fermat’s Little Theorem (If p is prime and a relatively prime to p, then a?~! = 1 (mod p).).
Lagrange’s proof gives Fermat’s Little Theorem (aka, the Fermat-Euler Theorem) as a consequence.

In his 1771 paper, Lagrange went on to prove the converse of Wilson’s Theorem. He also provided
a second proof of Wilson’s Theorem (starting from the Fermat-Euler Theorem). Both of those
portions of Lagrange’s article are featured in the related PSPs “Lagrange’s Proof of the Converse of
Wilson’s Theorem” and “Lagrange’s Alternate Proof of Wilson’s Theorem.” The projects in this trio
of PSPs are independent of each other. While they can also be implemented in any order, instructors
who choose to implement the current PSP along with either or both of the others will probably want
to begin with this one. Since the introductory sections of the three projects are nearly identical,
students would not need to re-read that section in the later project(s) implemented. The two PSPs
featuring proofs of Wilson’s Theorem also have identical concluding sections.

There is also a fourth project, entitled “Lagrange’s Study of Wilson’s Theorem,” which includes all
the above results. It is available (along with the three shorter projects) at https://digitalcommons.
ursinus.edu/triumphs_number.

Student Prerequisites

The project should be accessible to students early in a first course on number theory. Students should
have some familiarity with the definition of divisibility. Basic divisibility results (eg. if n|a + b and
n|a, then n|b) are used a couple times. Euclid’s Lemma (i.e., a prime divisor of a product must divide
one of its factors) is used once (in Task 18). Perhaps, the argument most unfamiliar to students
is for Task 28. The Binomial Theorem is needed, but stated in the text in the form in which it
is needed. The project avoids factorial notation, binomial coefficient notation, (Z), and congruence
notation because all of these were introduced after Lagrange.

PSP Design and Task Commentary

Following a short historical introduction, Section 1 presents Lagrange’s statement of Wilson’s Theo-
rem. Sections 2-4 then develop Lagrange’s proof of that theorem. Section 5 gives the demonstration
of how Lagrange’s proof of Wilson’s Theorem also gives a proof of Fermat’s Little Theorem as a
consequence. The Conclusion in Section 6 summarizes Lagrange’s work on Wilson’s Theorem; it can
be read either directly after Section 4 (for instructors who decide to end the PSP at that point) or
after Section 5.

Lagrange’s work is relatively easy to read, and he provided a good amount of detail. Many of
the tasks require short answers. Students primarily need to carefully read Lagrange’s argument and

7 A few tasks ask students to compute examples. These computations

fill in a few “missing lines.
aren’t strictly necessary. To save time, you could skip them, present and discuss the computations,
or assign them as homework.

Some task-by-task commentary follows.

e Task 4: I would emphasis to students they are the same As.
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o Task 6: The solution to this task is revealed in the subsequent Lagrange excerpt. You might
want to print the project so that you can hand out that excerpt after students complete this
task.

e Task 8: This task and Tasks 10 and 11 go together. As mentioned below, you could skip,
present, or assign these two tasks as homework to save time. I think it helps to get your hands
dirty to understand what’s happening.

o Task 10: If you assign this task as homework, you need to tell students whether they should
solve by comparing coefficients or use (5). If you have students complete this task during class,
don’t hand out the next page until they have finished.

o Task 11: This task only makes sense if you do Tasks 8 and 10.

o Task 19: This task may be confusing if students wrote a “simplified” answer for Task 13. The
unsimplified expression may appear in their answer to Task 12.

o Task 20: I wouldn’t worry about a formal inductive proof for this task.

e Task 21: Here is Lagrange’s solution:

... that the number A1) being augmented by one will be divisible by n; because the
formula which will serve to determine its value will be

n- a0y = B A B I
that is

(n—1)AMY =14 A+ A"+ A" ... 4 A,
thus

A(n—l) +1= nA(n—l) A A A A(n—z);

thus since A’, A", ..., A=2) will all be divisible by n, it follows that A®~Y 4+ 1 will always
be divisible by n.

XXX XX XXX X X XXX X XXX X X XXX X X XXX DX XXX X DX XXX X OXOXIXTXO

Suggestions for Classroom Implementation

Ideally, I would have students work on the answers to the Tasks in small groups during class time,
with an occasional whole-class discussion as appropriate. That said, I think the best practice for
classroom implementation is to respond to the dynamics of the students in your classroom. Individual
instructors should naturally adjust according to their own strengths and preferences, and those of
their students. At the end of a class day assign the next couple tasks for homework if those next
tasks are good ones for students on their own.
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Possible Modifications of the PSP

To save time you might include the computation answers to Tasks 8 and 10 in the PSP handout
and present/discuss them in class rather than ask students to do the computations.

The proof of Wilson’s Theorem ends with Task 22 at the end of Section 4 (The Main Theorem).
Section 5 (A Second Corollary) shows that Fermat’s Little Theorem follows from Lagrange’s
proof of Wilson’s Theorem. This section is optional. If it is not covered, then Section 6
(Conclusion) could still be read directly after Section 4.

I have not tried this, but rather than dedicating full days to the project you could interweave
it with a textbook section on divisibility. This would allow more flexibility for assigning good
tasks (computation-oriented, etc.) as homework.

IXTEX code of this entire PSP is available from the author by request to facilitate preparation of

advanced preparation / reading guides or ‘in-class worksheets’ based on tasks included in the project.

The PSP itself can also be modified by instructors as desired to better suit their goals for the course.

Sample Implementation Schedule (based on a 50-minute class period)

Day One Preparation: As homework before the first class day, students read up to Task 2
and answer Tasks 1-3.

Day One: Work from Task 4 to Task 15. Most tasks require only short answers. Tasks 8
and 10, however, involve computation. You may want to present and discuss the computations
requested here. Neither is strictly needed for the development of the proof but it’s hard to
understand what’s going on without getting your hands a little dirty.

Day Two Preparation: Any of the Tasks 4 to 15 not completed during class time. Read the
excerpt that follows Task 15 and complete Tasks 16 and 17.

Day Two: Work from Task 18 to Task 22. As noted earlier, instructors who decide to end
the PSP with Section 4 (Lagrange’s proof of Wilson’s Theorem) could also have students read
Section 6 (Conclusion) at this point, perhaps as homework.

Optional: Tasks 23 to 29 in Section 5 (Lagrange’s proof of Fermat’s Little Theorem) could
be completed as a third class day, homework, etc. Reading Section 6 (Conclusion) could also
be assigned at this point along with the two tasks in the Conclusion.

Connections to other Primary Source Projects

The following additional projects based on primary sources are also freely available for use in teaching

standard topics in an introductory course on number theory. The PSP author name of each is given

(together with the general content focus, if this is not explicitly given in the project title). Classroom-

ready versions of these projects can be downloaded from https://digitalcommons.ursinus.edu/

triumphs_number. They can also be obtained (along with their IXTEX code) from their authors.

Gaussian Integers and Dedekind’s Creation of an Ideal: A Number Theory Project, Janet Heine
Barnett (8 days)

Generating Pythagorean Triples: A Gnomonic Exploration, Janet Heine Barnett (1-2 days)
Greatest Common Divisor: Algorithm and Proof, Mary K. Flagg (3—4 days)
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o Lagrange’s Proof of the Converse of Wilson’s Thoerem, Carl Lienert (1 day)
Based on the same paper as the current PSP. Gives Lagrange’s proof of the converse to Wilson’s
Theorem.

o Lagrange’s Alternate Proof of Wilson’s Theorem, Carl Lienert (1 day)
Based on the same paper as the current PSP. Gives Lagrange’s second proof of Wilson’s The-
orem, using Fermat’s Little Theorem as a starting point.

o Lagrange’s Study of Wilson’s Theorem, Carl Lienert (5 days)
Based on the same paper as the current PSP. Unifies the results of the three related shorter
projects listed above into a single project.

o Primes, Divisibility, and Factoring, Dominic Klyve (57 days)
This project discusses the Fermat-Fuler Theorem which appears in the current PSP.

o The Mobius Function and Mobius Inversion, Carl Lienert (8 days)

o The Origin of the Prime Number Theorem, Dominic Klyve (2 days)

o The Pell Equation in India, Toke Knudsen and Keith Jones (3 days)
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