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Just prior to his 19th birthday, the mathematical genius Carl Friedrich Gauss (1777–1855) began a
“mathematical diary” in which he recorded his mathematical discoveries for nearly 20 years.1 Among
these discoveries is the existence of a beautiful relationship between three particular numbers:

• the ratio of the circumference of a circle to its diameter, or π;

• a specific value of a certain (elliptic) integral, which Gauss denoted by ϖ = 2

∫ 1

0

dx√
1− x4

;

• a number called “the arithmetic-geometric mean” of
√
2 and 1, which he denoted by M(

√
2, 1).

Like many of his discoveries, Gauss uncovered this particular relationship through a combination of the
use of analogy and the examination of computational data, a practice that historian Adrian Rice calls
“Gaussian Guesswork” in his Math Horizons2 article subtitled “Why 1.19814023473559220744 . . . is such a
beautiful number” [Rice, November 2009].

This project is one of a set of three projects that looks at the power of Gaussian guesswork via the story
of his discovery of this beautiful relationship through excerpts from his mathematical diary3 and related
manuscripts. In this project, we focus especially on how Gauss’ discovery led him to the creation of a
powerful new technique for evaluating certain types of integrals, such as the one that defines the number ϖ.

∗Dept. of Mathematics & Physics, Colorado State University-Pueblo, Pueblo, CO 81001; janet.barnett@csupueblo.edu.
1Gauss’ extraordinary mathematical talent was recognized at a young age and nurtured by his teachers at St. Katherine’s

Public School in the family’s home region of Brunswick, Germany. The first in his family to obtain a higher education (his
father worked at various trades and his mother was a housemaid before marriage), he completed his degree in mathematics by
age 18 and his doctorate by age 22. His academic studies and early research were made possible by the patronage of Charles
William Ferdinand, Duke of Brunswick (1735–1806), who paid Gauss’ educational expenses and continued to provide him with
a stipend until his own death in 1806. Gauss acknowledged the generosity of the Duke—whom he addressed as “Most Serene
Prince”—in the dedication of his famous groundbreaking book, Disquisitiones Arithmetica (Number Theory Investigations),
published in 1801. In recognition of his own generous contributions to the field, Gauss has become known as the “Prince of
Mathematics.” During his lifetime, he made important discoveries in every area of mathematics that was then known, as well
as a few new ones that he helped to create, including elliptic functions. He also applied his mathematical insights to problems
in physics, geodesy, magnetism, optics and astronomy. For more about Gauss’ life and works, see the references [Dunnington,
2004], [O’Connor and Robertson, 1996] and [Famous Scientists, 2016].

2Math Horizons is the undergraduate magazine of the Mathematical Association of America (MAA). It publishes expository
articles about mathematics and the culture of mathematics, including mathematical people, institutions, humor, games and
book reviews. For more information, visit https://www.maa.org/press/periodicals/math-horizons.

3Gauss’ diary remained in the possession of his family until 1898 and was first published by Felix Klein (1849–1925) in
[Klein, 1903]. An English translation with commentary on its mathematical contents by historian of mathematics Jeremy
Gray appears in [Gray, 1984], and was later reprinted in [Dunnington, 2004, 469–496]. A facsimile of the original diary can
also be found in Volume X.1 of Gauss’ Werke (Collected Works).
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1 Why study the integral
∫ 1

0
dx√
1−x4

?

If you have studied the family of curves known as lemniscates, then you may recall that the integral∫ 1
0

dx√
1−x4

gives us the arc length of one-fourth of the lemniscate of equation (x2 + y2)2 = x2 − y2. Interest
in the lemniscate and its arc length dates back to the earliest days of calculus, when the two Bernoulli
brothers (Jacob and Johann) studied them in the late 1690s. It was Jacob Bernoulli who named the curve
lemniscus, a Latin word for a type of a decorative ribbon shaped somewhat like the current symbol ∞ for
infinity. A sketch of the curve showing its division in four equal parts in shown in Figure 1.

Figure 1: Sketch of the lemniscate from Gauss’ notebook, from [Gauss, 1797, p. 160]

From his notebooks, we know that Gauss himself studied the lemniscate and the integral for its arclength
through the works of Euler, which he began to read by the age of 20. Gauss made note of these studies in
his 51st diary entry, where he wrote:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

I have begun to examine thoroughly the elastic lemniscatic4 curve depending on
∫
(1− x4)−1/2dx.

January 8, 1797

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Naturally, Gauss was interested in evaluating this integral. His first idea for doing this is one that perhaps
has also occurred to you, based on your experience with trigonometric substitution:5

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

. . . . . . xx =
sin

cos
θ

∫
1√
sin θ

dθ = 2

∫
1√

1− x4
dx

.
January 7, 1797

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Gauss’ notation here is a bit cryptic, as he seemed to be describing two different substitutions that would
lead him to the result indicated. In the following task, you will verify just one of these two substitutions.

4Originally, Gauss wrote ‘elastic’ here, only to cross it out at some later unknown date when he instead wrote in ‘lemniscatic.’
For information about the elastic curve and its relationship to the lemniscate, as well as their role in the early history of
calculus, see the author’s primary source project Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate
Curve, available at https://digitalcommons.ursinus.edu/triumphs_calculus/3/.

5The symbols used by Gauss in this and other diary entries have been changed slightly in order to maintain notational
consistency throughout the project, which uses excerpts from several different works by Gauss.
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Task 1 In this task, we consider the integral
∫

1√
1−x4

dx.

(a) Consider the substitution x2 = sin θ. Explain why this is a natural substitution to try here.
(b) Now verify that the substitution from part (a) gives the integral result that Gauss noted in his

diary entry of January 7, 1797. What strategies might we use in order to evaluate the resulting
dθ integral? What prevents these strategies from going through?

Interestingly, there is a slight variation on the substitution from Task 1 which allowed Gauss to even-
tually succeed in evaluating the lemniscate arc length integral. In the next task, we will use this other
substitution to transform this integral into a new form—a form that may not seem promising at first glance.
In the subsequent sections of this project, we will then work through Gauss’ treatment of the transformed
integral to see how he was eventually able to evaluate it.

Task 2 (a) Let x = sin θ. Show
∫ 1

0

dx√
1− x4

=

∫ π/2

0

dθ√
1 + sin2 θ

.

(b) Now re-write
∫ π/2

0

dθ√
1 + sin2 θ

as an integral of the form
∫ π/2

0

dθ√
m2 cos2 θ + n2 sin2 θ

.

State the values of m and n clearly.

2 The Arithmetic-Geometric Mean

In the next section of this project, we will see how Gauss finally managed to evaluate integrals of the form∫ π/2

0

dθ√
m2 cos2 θ + n2 sin2 θ

. In this section, we first take a look at the mathematical tool that would

eventually allow him to tackle this tricky integral. This tool—a type of average called the arithmetic-
geometric mean—was discovered by Gauss independently of his work on the lemniscate, but also quite
early in his mathematical studies. Although his Nachlass (a German term meaning roughly “mathematical
legacy”) contains extensive notes about the arithmetic-geometric mean and its properties, it was mentioned
only once in his published works, in an important astronomical paper on the gravitational attraction of
planets [Gauss, 1818].6

Here is what Gauss had to say about the arithmetic-geometric mean in his 1818 paper:7

6The rather long (but descriptive!) title of Gauss’ 1818 paper is “Determinatio Attratctionis, quam in punctum quodvis
positionis datae exerceret planeta, si eius massa per totam orbitam ratione temoris, quo singulae partes descibuntur, uniformiter
esset dispertita,” or “Determination of the Attraction, which a planet exerts on any point, if its mass is distributed uniformly
through the time of the orbit.” All excerpts from Gauss’ 1818 paper used in this project are taken from pages 352–353 of
Volume III of his Werke; their translations were prepared by George W. Heine III, Math and Maps, 2018.

7Additional details of Gauss’ work on the arithmetic-geometric mean can be found in the author’s primary source project
Gaussian Guesswork: Infinite Sequences and the Arithmetic-Geometric Mean, available at https://digitalcommons.ursinus.
edu/triumphs_calculus/2/.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Let m,n be two positive quantities, and set8

m1 =
1

2
(m+ n), n1 =

√
mn

so that m1, n1 represent the arithmetic mean and the geometric mean, respectively, of m and n.
The geometric mean will always be taken to be positive.

Similarly set

m2 =
1
2(m1 + n1), n2 =

√
m1n1

m3 =
1
2(m2 + n2), n3 =

√
m2n2

and so on, by which manner [are obtained] the sequences m,m1,m2,m3, etc., and n, n1, n2, n3, etc.,
converging rapidly to a common limit, which we denote µ, and call simply the arithmetic-geometric
mean between m and n.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 3 Write (at least) two comments and (at least) two questions about what Gauss’ description of the
arithmetic-geometric mean in the preceding excerpt.

You probably noticed that the value of the arithmetic-geometric mean µ depends on the starting values
that are used for m and n; we will use the function notation µ(m,n) to remind us of this fact.9 Although
Gauss did not give any examples of how to compute arithmetic-geometric mean in his 1818 astronomy
paper, here is one of the examples10 that he worked out much earlier in one of his unpublished Nachlass
papers, [Gauss, 1799].

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Example 1: m = 1, n = 0.2

m = 1.00000 00000 00000 00000 0 n = 0.20000 00000 00000 00000 0

m1 = 0.60000 00000 00000 00000 0 n1 = 0.44721 35954 99957 93928 2

m2 = 0.52360 67977 49978 99964 1 n2 = 0.51800 40128 22268 36005 0

m3 = 0.52080 54052 86123 95414 3 n3 = 0.52080 78709 39876 24344 0

m4 = 0.52080 16381 06187 n4 = 0.52080 16381 06187

Here m5, n5 differ in the 23rd decimal place.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

8Gauss himself used prime notation (i.e., m′,m′′,m′′′) to denote the terms of the sequence. In this project, we instead use
indexed notation (i.e., m1,m2,m3) in keeping with current notational conventions. To fully adapt Gauss’ notation to that
used today, we could also write m0 = m and n0 = n.

9Gauss used this same type of function notation in his unpublished writing about the arithmetic-geometric mean. Today,
the arithmetic-geometric mean is also sometimes denoted as M(m,n).

10We have slightly altered Gauss’ notation in this example in order to be consistent with the notation used in [Gauss, 1818].
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Task 4 This task examines examples from Gauss’ 1799 paper on the arithmetic-geometric mean.

(a) Verify that the values given by Gauss in Example 1 above are correct. Are you able to use your
calculator to obtain the same degree of accuracy (21 decimal places!) that Gauss obtained by
hand calculations?

(b) In Example 1 above, notice how quickly the two sequences converge to the same limiting
value, thereby allowing us to assert that µ(1, 0.2) ≈ 0.52080 16381 06187. Compile some ad-
ditional numerical evidence concerning Gauss’ claim that ‘the sequences m,m1,m2,m3, etc., and
n, n1, n2, n3, etc. converge rapidly to a common limit’ by computing the first few terms of the
sequences (mk), (nk) in the following two examples from Gauss’ 1799 paper. For each, compute
a sufficient number of terms to approximate the value of the arithmetic-geometric mean µ(m,n)

to at least 10 decimal places.
(i) m = 1, n = 0.8 (ii) m =

√
2, n = 1

(c) Based on these three examples, how convincing do you find Gauss’ assertion concerning the
rapidity of the convergence of the two sequences to the value of µ(m,n)?

In the next section, we will look at how Gauss used the arithmetic-geometric mean to evaluate integrals.

3 Gauss’ evaluation of the integral
∫

dθ√
m2 cos2 θ+n2 sin2 θ

We continue now with our reading of Gauss’ paper on the gravitational attraction of planets [Gauss, 1818].
Just after his definition of µ as the arithmetic-geometric mean of the numbers m and n, Gauss asserted:11

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Now we shall demonstrate, 1
µ to be the value of the integral∫

dθ

2π
√
mm cos2 θ + nn sin2 θ

from θ = 0 extended to θ = 2π.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Let’s pause before reading Gauss’ proof of this theorem to take a look at how it can be applied, and
especially how it relates to the lemniscate’s arc length.

Task 5 Recall from Task 4 of the previous section that Gauss approximated the arithmetic-geometric mean
µ for the values of m = 1 and n = 0.2, finding that µ(1, 0.2) ≈ 0.52080 16381 06187.

(a) Write down the integral corresponding to these values of m and n that Gauss’ theorem tells us
how to evaluate.

(b) Use Gauss’ approximated value for µ(1, 0.2) and his theorem to give an approximation for the
integral from part (a).

11In this and subsequent excerpts from Gauss’ paper, we have stated all limits of integration in radians; Gauss himself used
degrees for this purpose.
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Task 6 Recall from Task 2 that
∫ 1

0

dx√
1− x4

=

∫ π/2

0

dθ√
cos2 θ + 2 sin2 θ

, where this latter integral has the

form
∫

dθ√
m2 cos2 θ + n2 sin2 θ

with m = 1 and n =
√
2. In Task 4, part (b-ii), you also approximated

the value of the arithmetic-geometric mean µ(
√
2, 1) by computing the first few terms of the associated

arithmetic mean sequence (mk) and the associated geometric mean sequence (nk).
Use your approximate value for µ(

√
2, 1) to approximate the arc length of the full lemniscate curve.

Now that we have an idea of the power of Gauss’ theorem for evaluating
∫ 2π

0

dθ

2π
√

mm cos2 θ + nn sin2 θ
,

let’s tackle his proof! Read through this proof at least twice, making note of any questions or
comments you may have. The tasks that follow this excerpt will then guide us through the full details.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Now we shall demonstrate, 1
µ to be the value of the integral∫

dθ

2π
√
mm cos2 θ + nn sin2 θ

from θ = 0 extended to θ = 2π.

PROOF. We suppose the variable θ is expressed by another variable θ1, so that

sin θ =
2m sin θ1

(m+ n) cos2 θ1 + 2m sin2 θ1

[where] it is easily observed that while θ1 is increased from 0 to π
2 , π, 3π

2 , 2π, θ also (although by
different intervals) increases from 0 to π

2 , π, 3π
2 , 2π. The expansion duly performed, it is found to

be that

dθ√
mm cos2 θ + nn sin2 θ

=
dθ1√

m1m1 cos2 θ1 + n1n1 sin
2 θ1

and indeed the values of the integrals∫
dθ

2π
√
mm cos2 θ + nn sin2 θ

,

∫
dθ1

2π
√
m1m1 cos2 θ1 + n1n1 sin

2 θ1

if each of the variables is extended continuously from the value 0 to the value 2π, equal to each
other. And if this [process] is permitted to continue further, clearly these values also are equal to
the integral value ∫

dθ

2π
√
µµ cos2 θ + µµ sin2 θ

from θ = 0 to θ = 2π, which evidently becomes = 1
µ .

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Janet Heine Barnett, “Gaussian Guesswork,” MAA Convergence (November 2021) 6

https://www.maa.org/press/periodicals/convergence/gaussian-guesswork-three-mini-primary-source-projects-for-calculus-2-students


Gauss’ idea of setting up the substitution sin θ =
2m sin θ1

(m+ n) cos2 θ1 + 2m sin2 θ1
certainly gives us some

insight into why he is considered a mathematical genius! Before we look at the full details of this particular
substitution, let’s pause to look at Gauss’ overall argument.

The critical idea here is that Gauss’ (clever!) substitution produces a sequence of definite integrals that
all have the same (constant!) value:

∫ 2π

0

dθ

2π
√

m2 cos2 θ + n2 sin2 θ
=

∫ 2π

0

dθ1

2π
√
m2

1 cos
2 θ1 + n2

1 sin
2 θ1

=

∫ 2π

0

dθ2

2π
√

m2
2 cos

2 θ2 + n2
2 sin

2 θ2

= . . .

Notice also how the arithmetic mean sequence (mk) and geometric mean sequence (nk) associated with the
starting values of m and n come into this integral sequence. As we know from Section 2, the sequences (mk)

and (nk) both converge to the arithmetic-geometric mean µ(m,n). Connecting this fact to the constant
sequence of definite integrals above gives us the following surprising, but quite powerful, equality:

∫ 2π

0

dθ

2π
√
m2 cos2 θ + n2 sin2 θ

=

∫ 2π

0

dθ

2π
√

µ2 cos2 θ + µ2 sin2 θ
.

In the next task, you will give the details that show exactly why this “limit integral” is especially nice.
The final task in this section will then guide us through the rather complicated algebraic details of the
substitution that Gauss simply told us to ‘duly perform’.

Task 7 Evaluate the integral
∫ 2π

0

dθ

2π
√
µ2 cos2 θ + µ2 sin2 θ

.

Then explain how this relates back to Gauss’ claim that
∫ 2π

0

dθ

2π
√
m2 cos2 θ + n2 sin2 θ

=
1

µ
.

Task 8 In this task, we examine the details of Gauss’ substitution, which we restate here for ease of reference:

GIVEN: sin θ =
2m sin θ1

(m+ n) cos2 θ1 + 2m sin2 θ1

We will do this through a series of steps12 to see how the “expansion duly performed” gives the
following:

GOAL: dθ√
m2 cos2 θ + n2 sin2 θ

=
dθ1√

m2
1 cos

2 θ1 + n2
1 sin

2 θ1

The key to setting up the new integrand in θ1 will be to find two different (but equal) expressions in
θ1 for the differential d(sin θ).We first do this using the (original) constants m, n from the dθ integral

12If you enjoy algebraic challenges, you could first try your hand at carrying the substitution through on your own first.
But even if you decide not to take the full plunge, get ready for a bit of a workout! The particular outline given in this task is
based on details provided by Carl Gustav Jacob Jacobi (1804–1851) in his own celebrated book on elliptic functions [Jacobi,
1829]. Gauss himself left no record of his reasoning.
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throughout; the end result of this work will come from Differential Equality #2 in part (e) below.
Part (f) will then look at how to bring the (new) constants m1, n1 into the dθ1 integrand.

In each part of this task, you should complete the details that appear in bold font.

(a) We start by proving a fact that will be useful in re-writing the given substitution (in the first
box above) so that only one trigonometric function (sin θ1) appears on its right-hand side; this
will make certain steps (e.g., the derivative of the right-hand side of the given substitution)
easier to carry out. (Eventually, we will need to bring the cosine back into the equation.)
Use the Pythagorean identity cos2 θ1 = 1− sin2 θ1 to show that the following holds:

Part (a) End Result (m+ n) cos2 θ1 + 2m sin2 θ1 = (m+ n) + (m− n) sin2 θ1

(b) Using the end result of part (a), we can now re-write the given substitution as follows:

GIVEN (re-written): sin θ =
2m sin θ1

(m+ n) + (m− n) sin2 θ1

Use the quotient rule to differentiate the right-hand side of this expression, then
simplify in order to show that the following holds:

Differential Equality #1: cos θ dθ =
2m cos θ1[(m+ n)− (m− n) sin2 θ1]

[(m+ n) + (m− n) sin2 θ1]2
dθ1

(c) Our next step will be to re-write cos θ in terms of the variable θ1.
(Eventually, we will substitute this into the left-hand side of Differential Equality #1.)

(i) We start by again using the Pythagorean Identity cos2 θ = 1 − sin2 θ and the re-written
form of the given substitution from part (b) as follows. Be sure you see why each step holds!

cos2 θ = 1 − sin2 θ = 1 −
[

2m sin θ1

(m+ n) + (m− n) sin2 θ1

]2

=

[
(m+ n) + (m− n) sin2 θ1

]2 − 4m2 sin2 θ1[
(m+ n) + (m− n) sin2 θ1

]2

=

Set this equal to V .︷ ︸︸ ︷
(m+ n)2 + 2(m+ n)(m− n) sin2 θ1 + (m− n)2 sin4 θ1 − 4m2 sin2 θ1[

(m+ n) + (m− n) sin2 θ1
]2

Simplify the numerator V of the right-hand side of this last expression to show
that the following holds:

V = (m+ n)2 − 2(m2 + n2) sin2 θ1 + (m− n)2 sin4 θ1 (♢)
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Next show that the expression for V given in (♢) can be re-written to get:13

V = cos2 θ1
[
(m+ n)2 − (m− n)2 sin2 θ1

]
(♡)

Finally, substitute the expression given for V in (♡) back into the numerator of
the expression we obtained above for cos2 θ1 in order to get the following:

Part (c-i) End Result cos2 θ =
cos2 θ1

[
(m+ n)2 − (m− n)2 sin2 θ1

][
(m+ n) + (m− n) sin2 θ1

]2

(ii) Now use the result of part (i) to write an expression for cos θ.
(There will be a square root in this expression!)

(d) Before we go back to the differential expression, it will be helpful to also re-write the expres-
sion

√
m2 cos2 θ + n2 sin2 θ in terms of sin θ1. (Do you remember why we are interested in the

expression
√
m2 cos2 θ + n2 sin2 θ? If not, look back at Task 7!)

Dropping the square root for now, let’s start by substituting the expressions for sin θ and
cos2 θ from parts (b) and (c) respectively into this expression, simplifying a bit, and using
the Pythagorean Identity once more. Again, be sure you see why each step holds!

m2 cos2 θ + n2 sin2 θ = m2

[
cos2 θ1

[
(m+ n)2 − (m− n)2 sin2 θ1

][
(m+ n) + (m− n) sin2 θ1

]2
]
+ n2

[
2m sin θ1

(m+ n) + (m− n) sin2 θ1

]2

=
m2 cos2 θ1

[
(m+ n)2 − (m− n)2 sin2 θ1

]
+ 4m2n2 sin2 θ1[

(m+ n) + (m− n) sin2 θ1
]2

= m2

Set this equal to W︷ ︸︸ ︷
(1− sin2 θ1)

[
(m+ n)2 − (m− n)2 sin2 θ1

]
+ 4n2 sin2 θ1[

(m+ n) + (m− n) sin2 θ1
]2

Expand, then simplify, the expression W ; then show that the following holds:

W =
[
(m+ n)− (m− n) sin2 θ1

]2
Conclude that the following holds:

m2 cos2 θ + n2 sin2 θ =

[
m
(m+ n)− (m− n) sin2 θ1

(m+ n) + (m− n) sin2 θ1

]2
,

or equivalently,

Part (d) End Result
√
m2 cos2 θ + n2 sin2 θ = m

(m+ n)− (m− n) sin2 θ1

(m+ n) + (m− n) sin2 θ1
,

13A sophisticated way to do this is to use the equality 2(m2 + n2) = (m + n)2 + (m − n)2 to rewrite the middle term of
(♢), then factor (♢) by grouping. Another option is to start with the right-hand side of (♡) and work backwards to get (♢).
Either way, the Pythagorean Identity will be useful.
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(e) We’re now ready to go back to the differential equality that we found in part (b):

Differential Equality #1: cos θ dθ =
2m cos θ1[(m+ n)− (m− n) sin2 θ1]

[(m+ n) + (m− n) sin2 θ1]2
dθ1

Substituting the expression for cos θ from part (c-ii) into Differential Equality #1, we get:

Differential Equality #2:

cos θ1
√

(m+ n)2 − (m− n)2 sin2 θ1

(m+ n) + (m− n) sin2 θ1
dθ =

2m cos θ1[(m+ n)− (m− n) sin2 θ1]

[(m+ n) + (m− n) sin2 θ1]2
dθ1

Use the end result of part (d) and some simplification to show that we can re-write
Differential Equality #2 as follows:

Part (e) End Result
√
(m+ n)2 − (m− n)2 sin2 θ1dθ = 2

√
m2 cos2 θ + n2 sin2 θdθ1

(f) Rearranging the result of part (e) gives us the following, which is very close to what we want:

Differential Equality #3: dθ√
m2 cos2 θ + n2 sin2 θ

=
2dθ1√

(m+ n)2 − (m− n)2 sin2 θ1

All that remains is to see how the expression involving the constants m,n on the right-hand side
relates to one involving the constants m1, n1. The key to doing this is to recall that m1 =

m+n
2

and n1 =
√
mn. Use these facts to first show the following:

Part (f) Result #1 4(m2
1 cos

2 θ1 + n2
1 sin

2 θ1) = (m+ n)2 − (m− n)2 sin2 θ1

Hint: The Pythagorean Identity will be useful once more!

Then use this Part (f) Result #1 to show that the right-hand side of Differential
Equation #3 can be re-written as follows:

Part (f) Result #2 2dθ1√
(m+ n)2 − (m− n)2 sin2 θ1

=
dθ1√

m2
1 cos

2 θ1 + n2
1 sin

2 θ1

(g) Substituting Result #2 of Part (f) into Differential Equation #3 leaves us with just one last
piece to explain about Gauss’ final conclusion that∫ 2π

0

dθ

2π
√

m2 cos2 θ + n2 sin2 θ
=

∫ 2π

0

dθ1

2π
√

m2
1 cos

2 θ1 + n2
1 sin

2 θ1

.

Complete the proof by explaining why the limits of integration do not change under
Gauss’ substitution. (Gauss commented on these limits in the first sentence of his proof.)
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4 Why is 1.19814023473559220744 . . . such a beautiful number?
In the introduction to this project, we mentioned that historian Adrian Rice’s article “Gaussian Guesswork”
was cleverly subtitled “Why 1.19814023473559220744 . . . is such a beautiful number” [Rice, November
2009]. Since then, we’ve met this very same number in Task 6, where we found that 1.19814023473559220744 . . .
is a good approximation for the arithmetic-geometric mean µ(1,

√
2). Task 6 also highlights one of the

reasons why the specific arithmetic-geometric mean µ(1,
√
2) was of special interest to Gauss; namely

1

µ(
√
2), 1

=

∫ 2π

0

dθ

2π
√

cos2 θ + 2 sin2 θ

Now recall that
∫ 2π

0

dθ√
cos2 θ + 2 sin2 θ

=

∫ 1

0

dx√
1− x4

, where ϖ = 2

∫ 1

0

1√
1− t4

dt. Rearranging things

as needed (do this!), this lets us conclude (along with Gauss) that µ(
√
2, 1) =

π

ϖ
. . . a rather surprising

connection between three apparently unrelated numbers!!
Here is Gauss’ recording of his initial discovery of this relationship:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

We have established that the arithmetic-geometric mean between 1 and
√
2 is π/ϖ to 11 places;

the proof of this fact will certainly open up a new field of analysis.
May 30, 1799

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Interestingly, this discovery was largely based on numerical guesswork! In this project, we have only
been able to hint at aspects of that guesswork. Gauss’ work with the arithmetic-geometric mean illus-
trates this somewhat: he first calculated the value of µ(

√
2, 1) = 1.19814023473559220744 . . . as one of

his examples in [Gauss, 1799], well before he saw its connection to the elliptic integral
∫ 1
0

1√
1−t4

dt. Gauss
also used power series techniques on this integral to numerically estimate the value of ϖ, finding that
ϖ = 2.662057055429211981046 . . . . And, of course, he knew the value π = 3.14159265258979323846 . . . .
Although it is straightforward to check that the relationship µ(

√
2, 1) =

π

ϖ
is reasonable once these three

estimates are put in front of us in this way—you should do this!—we will likely never know exactly what
stroke of genius led Gauss to think about their possible connection in the first place.

Following his discovery that µ(
√
2, 1) =

π

ϖ
, it took Gauss nearly another full year to prove his guesswork

was correct. But, as he predicted, this discovery went well beyond just this one numerical relationship.
We have seen, for instance, how Gauss’ theorem allows us to numerically estimate any integral of the form∫ b
a

dθ

2π
√

mm cos2 θ+nn sin2 θ
by simply making use of the very rapid convergence of the arithmetic-geometric

mean. The ‘new field of analysis’ that opened up in connection with this proof led him well beyond
the study of elliptic functions of a single real-valued variable, and into the realm of functions of several
complex-valued variables. Today, a special class of such functions known as the ‘theta functions’ provide
a powerful tool that is used in a wide range of applications throughout mathematics—providing yet one
more piece of evidence of Gauss’ extraordinary ability as a mathematician and a guesswork genius!

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The arithmetic-geometric mean itself is an integral quantity. Proved.
December 23, 1799

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Janet Heine Barnett, “Gaussian Guesswork,” MAA Convergence (November 2021) 11

https://www.maa.org/press/periodicals/convergence/gaussian-guesswork-three-mini-primary-source-projects-for-calculus-2-students


References

David Cox. The Arithmetic-Geometric Mean of Gauss. L’Enseignement Mathématique, 30:275–330, 1984.

Guy Waldo Dunnington. Carl Friedrich Gauss: Titan Of Science. The Mathematical Association of
America, Washington DC, 2004. Reprint of original 1955 publication. Includes the English translation
of Gauss’ Diary by Jeremy Gray.

Famous Scientists. Carl Friedrich Gauss. 2016. www.famousscientists.org/carl-friedrich-gauss/.
Accessed: November 7, 2021.

Carl Friedrich Gauss. Teilung der Lemniskate (Division of the Lemniscate). 1797. In Felix Klein, editor,
Werke, volume X.1, pages 160–164. Konigliche Gesellschaft der Wissenschaft, Göttingen, 1917.

Carl Friedrich Gauss. Arithmetisch Geometrisches Mittel (Arithmetic-Geometric Mean). 1799. In Ernst
Schering, editor, Werke, volume III, pages 361–432. Gedruckt in der Dieterichschen universitätsdruckerei,
Göttingen, 1866.

Carl Friedrich Gauss. Determinatio attratctionis, quam in punctum quodvis positionis datae exerceret
planeta, si eius massa per totam orbitam ratione temporis, quo singulae partes descibuntur, uniformiter
esset dispertita (Determination of the Attraction, which a planet exerts on any point, if its mass is
distributed uniformly through the time of the orbit). 1818. Presented to the Göttingen Royal Society of
Science on January 17, 1818. Also in Ernst Schering, editor, Werke, volume III, pages 331–356. Gedruckt
in der Dieterichschen universitätsdruckerei, Göttingen, 1866.

J. J. Gray. A Commentary on Gauss’s Mathematical Diary, 1796–1814, with an English Translation.
Expositiones Mathematicae, 2(2):97–130, 1984.

Carl Gustav Jacob Jacobi. Fundamenta nova theoriae functionum ellipticorum (New foundations of the
theory of elliptic functions). Borntraeger, Königsberg, 1829. Also in C. W. Borchard, editor, Jacobi’s
Gesammelte Werke (Collected Works), Volume 1, pages 49–239. Berlin, Reimer, 1881.

Felix Klein. Gauss’ Wissenschaftliches Tagebuch (Mathematical Diary), 1796–1814. Mathematische An-
nalen, 57:1–34, 1903.

J. J. O’Connor and E. F. Robertson. Johann Carl Friedrich Gauss. MacTutor, 1996. https:
//mathshistory.st-andrews.ac.uk/Biographies/Gauss/. Accessed: November 7, 2021.

Adrian Rice. Gaussian Guesswork, or why 1.19814023473559220744 . . . is such a beautiful number. Math
Horizons, pages 12–15, November 2009.

Janet Heine Barnett, “Gaussian Guesswork,” MAA Convergence (November 2021) 12

www.famousscientists.org/carl-friedrich-gauss/
https://mathshistory.st-andrews.ac.uk/Biographies/Gauss/
https://mathshistory.st-andrews.ac.uk/Biographies/Gauss/
https://www.maa.org/press/periodicals/convergence/gaussian-guesswork-three-mini-primary-source-projects-for-calculus-2-students


Notes to Instructors
PSP Content: Topics and Goals

This mini-Primary Source Project (mini-PSP) is one of a set of three mini-PSPs designed to consolidate
student proficiency of the following traditional topics from a first-year Calculus course:

• Gaussian Guesswork: Elliptic Integrals and Integration by Substitution
• Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate Curve
• Gaussian Guesswork: Infinite Sequences and the Arithmetic-Geometric Mean

Each of these mini-PSPs can be used either alone or in conjunction with any of the other three. All
three are based on excerpts from Gauss’s mathematical diary and related primary texts that will introduce
students to the power of numerical experimentation via the story of his discovery of a relationship between
three particular numbers: the ratio of the circumference of a circle to its diameter (π); a specific value (ϖ)
of the elliptic integral u =

∫ x

0

dt√
1− t4

; and the Arithmetic-Geometric Mean of 1 and
√
2. Like many of

his discoveries, Gauss uncovered this particular relationship through a combination of the use of analogy
and the examination of computational data, a practice referred to as “Gaussian Guesswork” by historian
Adrian Rice in his Math Horizons article subtitled “Why 1.19814023473559220744 . . . is such a beautiful
number” [Rice, November 2009].

The primary content goal of this particular mini-PSP is to consolidate students’ understanding of inte-
gration by substitution. The project’s core content appears in Task 8, in which students work through the
details of a sophisticated substitution used by Gauss to evaluate integrals of the form

∫ 2π
0

dθ√
m2 cos2 θ+n2 sin2 θ

.
Although this particular substitution is not itself part of the standard Calculus II curriculum, working
through its details provides an excellent opportunity for Calculus II students to apply and consolidate core
concepts and techniques, and to witness their interplay within the context of some amazingly beautiful,
and important, mathematics!

Student Prerequisites

Completion of this project requires an understanding of basic integration concepts, including familiarity
with integration by substitution. Some familiarity with the technique of trigonometric substitution is also
assumed, but only for the completion of Task 1. Especially for Section 3, basic knowledge of trigonometric
identities and derivatives (for the sine and cosine function only) is essential, as is an understanding of the
principles of algebraic manipulation. Although infinite sequences appear in the project, they do so in a
fairly straightforward way that requires little more than the ability to numerically compute arithmetic and
geometric means. The project could thus easily be used in the course prior to the formal study of infinite
sequences.

PSP Design and Task Commentary

Following a brief introduction to set the historical stage, Section 1 sets the mathematical stage by prompting
students to consider the difficulties involved in evaluating the definite integral

∫ 1
0

dx√
1−x4

. Task 2 in that same
section then has students use substitution and the Pythagorean Identity in order to transform that integral∫ 1
0

dx√
1−x4

to an integral of the form
∫ π/2
0

dθ√
m2 cos2 θ+n2 sin2 θ

. Section 2 next provides a brief introduction to
the concept of the arithmetic-geometric mean which is sufficient for understanding the idea behind Gauss’
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proof of the theorem which states
∫ 2π
0

dθ√
m2 cos2 θ+n2 sin2 θ

= µ(m,n), where µ(m,n) denotes the arithmetic-
geometric mean of m and n. That theorem and its proof are then presented in Section 3, starting with
several tasks that explore the meaning (and power!) of the theorem statement, as well as the general idea
behind Gauss’ proof plan. As noted above, Task 8 in that section then guides students through the details
of the substitution used in the proof. Although that task is heavily scaffolded, verifying the algebraic
details outlined therein does require considerable focus and effort on the part of the students. A short
concluding section then ties the mathematical details of this particular project to the larger story of Gauss’
amazing discovery.

Suggestions for Classroom Implementation

Classroom implementation of this and other mini-PSPs in the collection may be accomplished through
individually assigned work, small-group work and/or whole-class discussion; a combination of these in-
structional strategies is recommended in order to take advantage of the variety of questions included in
the project.

To reap the full mathematical benefits offered by the PSP approach, students should be required to
read assigned sections in advance of in-class work, and to work through primary source excerpts together
in small groups in class. The author’s method of ensuring that advance reading takes place is to require
student completion of “Reading Guides” (or “Entrance Tickets”). These Reading Guides typically include
“Classroom Preparation” exercises (drawn from the PSP Tasks) for students to complete prior to arriving
in class; they may also include “Discussion Questions” that ask students only to read a given task and
jot down some notes in preparation for class work. On occasion, tasks are also assigned as follow-up
to a prior class discussion. In addition to supporting students’ advance preparation efforts, these guides
provide helpful feedback to the instructor about individual and whole-class understanding of the material.
The author’s students receive credit for completion of each Reading Guide (with no penalty for errors in
solutions). A sample guide (based on the Day 1 Advanced Preparation Work suggested in the Sample
Implementation Schedule given below) is appended to the end of these Notes.

Sample Implementation Schedule (based on a 75-minute class period)

To complete this particular mini-PSP in its entirety, the following implementation schedule is recommended:

• Advance Preparation Work for Day 1 (to be completed before class): Read through the end of
Section 2, completing Tasks 1–4 for class discussion along the way, per the sample Reading Guide in
Appendix I.

• Class Work for Day 1

– Brief whole-class or small-group comparison of answers to Tasks 1–4.
– Small-group work on Tasks 5–8 (supplemented by whole-class discussion as deemed appropriate

by the instructor). Note that Task 8 forms the core of the material in this mini-PSP, but will
require careful attention to algebraic details on the part of the students. Small-group work
interspersed with whole-class discussion is recommended in order to help students keep track of
the overall direction and goal of this task. As needed (or desired), continued work on Task 8
could be assigned as follow-up to the work completed in class. An in-class worksheet that
guides students through the derivations in Task 8 and offers helpful suggestions at
key junctures is included at the end of these Notes to Instructors.
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• Homework (optional): A complete formal write-up of student work on some or all of Tasks 2–7
could be assigned, to be due at a later date (e.g., one week after completion of the in-class work).

• Advance Preparation Work for Day 2 (to be completed before class): Read the project conclu-
sion in Section 4. As needed (or desired), continued “advance work” on Task 8 could also be assigned
in preparation for small-group or whole-class discussion on Day 2.

• Class Work for Day 2 (based on a 75-minute class period)
The amount of time required to complete the following on Day 2 will naturally vary depending on the
instructor’s goals and students’ backgrounds, but is not expected to require an entire class period.

– As appropriate, continued small-group work on Task 8; if advance preparation work was assigned
on this task, this could consist simply of a comparison of individual student answers.

– Concluding whole group discussion of the mathematical ideas in the project.

• Homework (optional): A complete formal write-up of student work on Task 8 could be assigned,
to be due at a later date (e.g., one week after completion of the in-class work).

LATEX code of the entire PSP is available from the author by request to facilitate preparation of reading
guides or ‘in-class task sheets’ based on tasks included in the project. The PSP itself can also be modified
by instructors as desired to better suit their goals for the course.

Connections to other Primary Source Projects
Links to all three “Gaussian Guesswork’’ PSPs (described earlier in these Notes) are as follows:

• Gaussian Guesswork: Elliptic Integrals and Integration by Substitution
https://digitalcommons.ursinus.edu/triumphs_calculus/8/

• Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate Curve
https://digitalcommons.ursinus.edu/triumphs_calculus/3/

• Gaussian Guesswork: Infinite Sequences and the Arithmetic-Geometric Mean
https://digitalcommons.ursinus.edu/triumphs_calculus/2/

The following additional projects based on primary sources are also freely available for use in teaching
standard topics in the calculus sequence. The PSP author name of each is given (together with the general
content focus, if this is not explicitly given in the project title). Each of these can be completed in 1–2
class days, with the exception of the three projects followed by an asterisk (*) which require 3, 4 and 6
days respectively for full implementation. Classroom-ready versions of these projects can be downloaded
from https://digitalcommons.ursinus.edu/triumphs_calculus.

• Investigations Into d’Alembert’s Definition of Limit (calculus version), Dave Ruch
• L’Hôpital’s Rule, Danny Otero
• The Derivatives of the Sine and Cosine Functions, Dominic Klyve
• Fermat’s Method for Finding Maxima and Minima, Kenneth M Monks
• Beyond Riemann Sums: Fermat’s Method of Integration, Dominic Klyve
• How to Calculate π: Buffon’s Needle (calculus version), Dominic Klyve (integration by parts)
• How to Calculate π: Machin’s Inverse Tangents, Dominic Klyve (infinite series)
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• Euler’s Calculation of the Sum of the Reciprocals of Squares, Kenneth M Monks (infinite series)
• Fourier’s Proof of the Irrationality of e, Kenneth M Monks (infinite series)
• Jakob Bernoulli Finds Exact Sums of Infinite Series (Calculus Version),* Danny Otero and James

Sellars
• Bhāskara’s Approximation to and Mādhava’s Series for Sine, Kenneth M Monks (approximation,

power series)
• Braess’ Paradox in City Planning: An Application of Multivariable Optimization, Kenneth M Monks
• Stained Glass, Windmills and the Edge of the Universe: An Exploration of Green’s Theorem,* Abe

Edwards
• The Radius of Curvature According to Christiaan Huygens,* Jerry Lodder
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APPENDIX I

This appendix provides a ‘Sample Reading Guide’ that illustrates the author’s method for
assigning advance preparation work in connection with classroom implementation of primary
source projects. More detail concerning these guides is included in the subsection “Suggestions
for Classroom Implementation” of the Notes to Instructors for this project.



SAMPLE READING GUIDE: Advance Preparation Work for Day 1

Background Information: The goal of the advance reading and tasks assigned in this 3-page reading guide
is to lay the groundwork for in-class work on the tasks in Section 3 of this project, by having students first
consider possible techniques for approaching the integral in question (Tasks 1 & 2) and introducing them
to the basic idea of the arithmetic-geometric mean (Tasks 3 & 4) which is central to the substitution used
by Gauss in the proof that forms the core of Section 3.

**********************************************************************************************
Reading Assignment: Gaussian Guesswork: Elliptic Integrals and Integration by Substitution, pp. 1–4

1. Read the introduction on page 1.
Any questions or comments?

2. In Section 1, read pages 1–2, stopping at Task 1.
Any questions or comments?

3. Class Prep: Complete Task 1 here:

Task 1 In this task, we consider the integral
∫

1√
1−x4

dx.

(a) Consider the substitution x2 = sin θ. Explain why this is a natural substitution to try here.

(b) Now verify that the substitution from part (a) gives the integral result that Gauss noted in
his diary entry of January 7, 1797. What strategies might we use in order to evaluate the
resulting dθ integral? What prevents these strategies from going through?

Sample Reading Guide: Gaussian Guesswork: Elliptic Integrals and Integration by Substitution
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4. Read the paragraph between Task 1 and Task 2.
Any questions or comments?

5. Class Prep: Complete Task 2 here:

Task 2

(a) Let x = sin θ. Show
∫ 1

0

dx√
1− x4

=

∫ π/2

0

dθ√
1 + sin2 θ

.

(b) Now re-write
∫ π/2

0

dθ√
1 + sin2 θ

as an integral of the form
∫ π/2

0

dθ√
m2 cos2 θ + n2 sin2 θ

.

State the values of m and n clearly.

6. In the beginning of Section 2, stopping at Task 3.
Any questions or comments?

7. Class Prep: Complete Task 3 here:

Task 3
Write (at least) two comments and (at least) two questions about what Gauss’ description of the
arithmetic-geometric mean in the first excerpt on page 4.

Sample Reading Guide: Gaussian Guesswork: Elliptic Integrals and Integration by Substitution
Janet Heine Barnett, “Gaussian Guesswork,” MAA Convergence (November 2021)

2

https://www.maa.org/press/periodicals/convergence/gaussian-guesswork-three-mini-primary-source-projects-for-calculus-2-students


8. Class Prep: Complete Task 4 here:

Task 4 This task examines examples from Gauss’ 1799 paper on the arithmetic-geometric mean.
(a) Verify that the values given by Gauss in Example 1 (in the second excerpt on page 4) are

correct. Are you able to use your calculator to obtain the same degree of accuracy (21 decimal
places!) that Gauss obtained by hand calculations?

(b) In Example 1 above, notice how quickly the two sequences converge to the same limiting
value, thereby allowing us to assert that µ(1, 0.2) = 0.52080 16381 06187 . . .. Compile some
additional numerical evidence concerning Gauss’ claim that ‘the sequences m,m1,m2,m3, etc.,
and n, n1, n2, n3, etc. converge rapidly to a common limit’ by computing the first few terms of
the sequences (mk), (nk) in the following two examples from Gauss’ 1799 paper. For each,
compute a sufficient number of terms to approximate the value of the arithmetic-geometric
mean µ(m,n) to at least 10 decimal places.

(i) m = 1, n = 0.8

(ii) m =
√
2, n = 1

(c) Based on these three examples, how convincing do you find Gauss’ assertion concerning the
rapidity of the convergence of the two sequences to the value of µ(m,n)?
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APPENDIX II

This appendix provides an (8-page!) in-class worksheet for Task 8, which is desiged to guide
students through the details of the substitution used by Gauss in his proof concerning the
evaluation of integrals of the form

∫ 2π
0

dθ√
m2 cos2 θ+n2 sin2 θ

. Closely supervised small-group work
interspersed with whole-class discussion is recommended in order to help students keep track
of the overall direction and goal of this task.



Task 8 Worksheet
In this task, we examine the details of Gauss’ substitution, restated here for ease of reference:

GIVEN: sin θ =
2m sin θ1

(m+ n) cos2 θ1 + 2m sin2 θ1

The series of steps outlined below1 show how to get from this substitution to the following equality:2

GOAL: dθ√
m2 cos2 θ + n2 sin2 θ

=
dθ1√

m2
1 cos

2 θ1 + n2
1 sin

2 θ1

In each part of this task, you should complete the details that appear in bold font.

(a) Use the Pythagorean identity cos2 θ1 = 1− sin2 θ1 to show that the following holds:

Part (a) End Result (m+ n) cos2 θ1 + 2m sin2 θ1 = (m+ n) + (m− n) sin2 θ1

1If you enjoy algebraic challenges, you could first try your hand at carrying the substitution through on your own first. But even
if you decide not to take the full plunge, get ready for a bit of a workout! The particular outline given in this task is based on details
provided by Carl Gustav Jacob Jacobi (1804–1851) in his own celebrated book on elliptic functions, written in 1829. Gauss himself
left no record of his reasoning.

2The key to setting up the new integrand in θ1 will be to find two different (but equal) expressions in θ1 for the differential
d(sin θ).We first do this using the (original) constants m, n from the dθ integral throughout; the end result of this work will come
from Differential Equality #2 in part (e) below. Part (f) will then look at how to bring the (new) constants m1, n1 into the dθ1
integrand.
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(b) Using the end result of part (a), we can now re-write the given substitution as follows:

GIVEN (re-written): sin θ =
2m sin θ1

(m+ n) + (m− n) sin2 θ1

Use the quotient rule to differentiate the right-hand side of this expression, then simplify in
order to show that the following holds:

Differential Equality #1: cos θ dθ =
2m cos θ1[(m+ n)− (m− n) sin2 θ1]

[(m+ n) + (m− n) sin2 θ1]2
dθ1
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(c) Our next step will be to re-write cos θ in terms of the variable θ1.
(Eventually, we will substitute this into the left-hand side of Differential Equality #1.)

(i) We start by again using the Pythagorean Identity cos2 θ = 1 − sin2 θ and the re-written form of the
given substitution from part (b) as follows. Be sure you see why each step holds!

cos2 θ = 1 − sin2 θ = 1 −
[

2m sin θ1

(m+ n) + (m− n) sin2 θ1

]2

=

[
(m+ n) + (m− n) sin2 θ1

]2 − 4m2 sin2 θ1[
(m+ n) + (m− n) sin2 θ1

]2

=

Set this equal to V .︷ ︸︸ ︷
(m+ n)2 + 2(m+ n)(m− n) sin2 θ1 + (m− n)2 sin4 θ1 − 4m2 sin2 θ1[

(m+ n) + (m− n) sin2 θ1
]2

Simplify the numerator V of the right-hand side of this last expression to show that the
following holds:

V = (m+ n)2 − 2(m2 + n2) sin2 θ1 + (m− n)2 sin4 θ1 (♢)
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Part (c-i) Continued

Recall from preceding page: V = (m+ n)2 − 2(m2 + n2) sin2 θ1 + (m− n)2 sin4 θ1 (♢)

Next show that the expression for V given in (♢) can be re-written to get:3

V = cos2 θ1
[
(m+ n)2 − (m− n)2 sin2 θ1

]
(♡)

Finally, substitute the expression given for V in (♡) back into the numerator of the
expression we obtained above for cos2 θ1 in order to get the following:

Part (c-i) End Result cos2 θ =
cos2 θ1

[
(m+ n)2 − (m− n)2 sin2 θ1

][
(m+ n) + (m− n) sin2 θ1

]2

(ii) Now use the result of part (i) to write an expression for cos θ. Box your answer, and
label it “Part (c-ii) End Result”. (There will be a square root in this expression!)

3A sophisticated way to do this is to use the equality 2(m2 + n2) = (m+ n)2 + (m− n)2 to rewrite the middle term of (♢), then
factor (♢) by grouping. Another option is to start with the right-hand side of (♡) and work backwards to get (♢). Either way, the
Pythagorean Identity will be useful.
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(d) It will be helpful to also re-write the expression
√
m2 cos2 θ + n2 sin2 θ in terms of sin θ1.

Dropping the square root for now, let’s start by substituting the expressions for sin θ and cos2 θ from parts
(b) and (c) respectively into this expression, simplifying a bit, and using the Pythagorean Identity once
more. Again, be sure you see why each step holds!

m2 cos2 θ + n2 sin2 θ = m2

[
cos2 θ1

[
(m+ n)2 − (m− n)2 sin2 θ1

][
(m+ n) + (m− n) sin2 θ1

]2
]
+ n2

[
2m sin θ1

(m+ n) + (m− n) sin2 θ1

]2

=
m2 cos2 θ1

[
(m+ n)2 − (m− n)2 sin2 θ1

]
+ 4m2n2 sin2 θ1[

(m+ n) + (m− n) sin2 θ1
]2

= m2

Set this equal to W︷ ︸︸ ︷
(1− sin2 θ1)

[
(m+ n)2 − (m− n)2 sin2 θ1

]
+ 4n2 sin2 θ1[

(m+ n) + (m− n) sin2 θ1
]2

Expand, then simplify, the expression W ; then show that the following holds:

W =
[
(m+ n)− (m− n) sin2 θ1

]2

Conclude that the following holds:

m2 cos2 θ + n2 sin2 θ =

[
m
(m+ n)− (m− n) sin2 θ1

(m+ n) + (m− n) sin2 θ1

]2
,

or equivalently,

Part (d) End Result
√
m2 cos2 θ + n2 sin2 θ = m

(m+ n)− (m− n) sin2 θ1

(m+ n) + (m− n) sin2 θ1
,
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(e) We’re now ready to go back to the differential equality that we found in part (b):

Differential Equality #1: cos θ dθ =
2m cos θ1[(m+ n)− (m− n) sin2 θ1]

[(m+ n) + (m− n) sin2 θ1]2
dθ1

Substituting the expression for cos θ from part (c-ii) into Differential Equality #1, we get:

Differential Equality #2:

cos θ1
√

(m+ n)2 − (m− n)2 sin2 θ1

(m+ n) + (m− n) sin2 θ1
dθ =

2m cos θ1[(m+ n)− (m− n) sin2 θ1]

[(m+ n) + (m− n) sin2 θ1]2
dθ1

Use the end result of part (d) and some simplification to show that we can re-write Differential
Equality #2 as follows:

Part (e) End Result
√
(m+ n)2 − (m− n)2 sin2 θ1dθ = 2

√
m2 cos2 θ + n2 sin2 θdθ1
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(f) Rearranging the result of part (e) gives us the following:

Differential Equality #3: dθ√
m2 cos2 θ + n2 sin2 θ

=
2dθ1√

(m+ n)2 − (m− n)2 sin2 θ1

This is very close to what we want:

GOAL: dθ√
m2 cos2 θ + n2 sin2 θ

=
dθ1√

m2
1 cos

2 θ1 + n2
1 sin

2 θ1

All that remains is to see how the expression involving the constants m,n on the right-hand side of
Differential Equation #3 relates to the constants m1, n1 on the right-hand side of our goal equality.

The key to doing this is to recall that m1 =
m+n
2 and n1 =

√
mn.

Use these facts to first show the following:

Part (f) Result #1 4(m2
1 cos

2 θ1 + n2
1 sin

2 θ1) = (m+ n)2 − (m− n)2 sin2 θ1

Hint: The Pythagorean Identity will be useful once more!

Then use this Part (f) Result #1 to show that the right-hand side of Differential Equation
#3 can be re-written as follows:

Part (f) Result #2 2dθ1√
(m+ n)2 − (m− n)2 sin2 θ1

=
dθ1√

m2
1 cos

2 θ1 + n2
1 sin

2 θ1
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(g) Substituting Result #2 of Part (f) into Differential Equation #3 leaves us with just one last piece to explain
about Gauss’ final conclusion that

∫ 2π

0

dθ

2π
√

m2 cos2 θ + n2 sin2 θ
=

∫ 2π

0

dθ1

2π
√

m2
1 cos

2 θ1 + n2
1 sin

2 θ1

.

Complete the proof by explaining why the limits of integration do not change under Gauss’
substitution. (Gauss commented on these limits in the first sentence of his proof.)
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