Studies on Elliptic Functions
(By N. H. Abel)

Translated from the French* by Marcus Emmanuel Barnes

The logarithmic function, the exponential and circular functions were for a long time
the only transcendental functions which attracted the attention of geometers. Only recently
have others been considered. Among these, we must distinguish certain functions named
elliptic, as they have nice analytical properties for application in diverse branches of math-
ematics. The idea for these functions was given by the immortal Euler, who demonstrated
that the separable equation
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has an algebraic integral. ! After Euler, Lagrange added something, by giving his ele-
gant theory of the transformation of the integral [ \/[(1—p21;8)9(61—q2x ok where R is a rational
function in . But the first, and if I am not mistaken, the only one who deepened the nature
of these functions, was M. Legendre, who, first in his memoir on elliptic functions?, and
then in his excellent mathematical exercises, developed a number of elegant properties of
these functions and showed their application. At the time of the publication of this work,
nothing has been added to M. Legendre’s theory. I believe that one will see with pleasure
here the subsequent study of these functions.

In general, by the term elliptic function we understand any function included in the
integral
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*N. H. Abel, Recherches sur les fonctions elliptiques, Journal fr die reine und angewandte Mathematik,
Vol. 2, 1827. pp. 101-181.

!Presumably, Abel is referring to “Integratio aequationis d:c/\/(A + Bz + Cx?2 + Da3 + Ez*) =
dy/\/(A + By + Cy? + Dy3 + Ey*) which was originally published in Novi Commentarii academiae scein-
tiarum Petropolitanea 12, 1768, pp.3-16; the paper has been republished in Euler’s Opera Omnia: Series 1,
Vol. 20, pp. 302-317.

2Here Abel is presumably referring to Legendre’s Ezercises de calcul intégral, 1811.




where R is a rational function and «, 3, v, &, € are real constants. M. Legendre
demonstrated that with appropriate substitutions one can always reduce this integral to
the form

/ Poy
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where P is a rational function in y%. With appropriate reductions this integral can
always be brought to the form

A+ By? oy

C+Dy? Via+ o2 + eyt

and this to:

A+ Bsin® 6 00
C+Dsin®0 /(1 - 2sin?6)’

where c is real and less than one.
It follows that all elliptic functions can be reduced to one of three forms:

/ %6 ;/80\/(1 — 2 sin? (9);/ % ,
V(1 — c2sin? 6) (1+nsin?)1/(1 — c2sin? 9)

which M. Legendre named elliptic functions of the first, second, and third kind. It
was these three functions which M. Legendre considered above all, the first which is the
simplest and has the most remarkable properties.

I propose in this memoir to consider the inverse functions, that is, the function ¢a,

determined by the equations
00
o= / ———— and
1 —c2sin%0

sinf = p(a) = z.

The last equation gives

00.4/ (1 —sin? §) = 0.pa = O,
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2 was positive, but I noticed that the previous formulas are

M. Legendre assumes c
simpler if we assume ¢? to be negative, = —e?. Similarly, I write for more symmetry

1 — c?2? in place of 1 — z2. Thus the function pa =  will be given by the equation

a—/ Oz
) VA=) (1 + e2a?)

or

oo = da/[(1 — p2a)(1 + e2p2a)].

For short, I introduce two other functions of a;, namely:

fa=+/(1—-c2p?a); Fa=+/(1+ e2p?a).

Several properties of these functions allow one to immediately deduce well known prop-
erties of the elliptic function of the first kind, but the others are more hidden. For example,
one can show that the equations pa = 0, fa = 0, Fa = 0 have a infinite number of roots,
all of which one can find. One of the remarkable properties is that one can express ¢(ma).
f(ma), F(ma) (m being a whole number) as rational in ¢, fo,Fa. Also it is not hard
to find p(ma), f(ma), F(ma) when pa, fa, Fa are known; but the inverse problem, to
determine pa, fa, Fa in p(ma), f(ma), F(ma) is very difficult because it depends on an
equation of higher degree (namely of degree m?).

The solution of this equation is the principle object of this memoir. First we will show
how to find all the roots using the functions ¢, f, F. Later we will treat the algebraic
solution of the equation in question and reach a remarkable result, that o(:); f();
F(£) may be expressed in ¢a, fo, Fa by means of one function, which in relation to
a, contains no irrationalities other than radicals. This produces a class of very general
equations which can be solved algebraically. We remark that the expressions for the roots
contain constant quantities which in general are not expressible as algebraic quantities.
These constant quantities depend on an equation of degree m? — 1. We will show how, by
means of algebraic functions, one can reduce its solution to the solution of an equation of
degree m + 1. We will give several expressions for the functions ¢(2n + 1)a, f(2n + 1)a,
F(2n + 1)« as functions of ¢, fa, Fa. We will subsequently deduce the values of ¢,
fa, Fa as functions of . We will demonstrate that these functions can be decomposed
into infinitely many factors and even into infinitely many partial fractions.

§. 1.

Fundamental Properties of pa; fa; Fa.
1.

Suppose that pa = = (1.), we have by the preceding:
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0 VI(1—c2a2)(1 + e222)]
From that one sees that «, considered as a function of z, is positive from = = 0, to
x = % If we let

w : ox
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it is clear that ¢« is positive and is increasing from a = 0 to a = 3. One will have

4. o(0) :0,%%) - %

Because o changes sign when one writes —x in place of x, the same holds for the
function pa in relation to a, and as a consequence we have

5. p(—a)=—p(a).

Putting 7 in (1.) instead of x (where for short, i represents the imaginary quantity
v/—1) and designating the value of « as i, it becomes

6 ) (i) and 3 / v ox
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where 3 is real and positive from z = 0 to = L. Thus if we let

e
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x will be positive from 3 = 0 to 8 = %; that is, the function %cp(ﬁz) is positive between

_ v(qi)’

one has

these same limits. Given = « and y

o= [ o .
0 VL= L+

Thus one sees, supposing ¢ instead of e and e instead of c,

@(qi)

1
fa =1 -c¢?a),

And since Fa =11 c2a),

we see that changing ¢ to e and e to ¢, f(ai) and F(«i) turn respectively into Fa and
fa. Finally, the equations (2.) and (7.) show, that by the same transformation w and w

changes to pa.



turn respectively into w and w. According to (7.) one will have z = % for = Z, thus in

virtue of the equation xi = (i) we have

@
2

In virtue of the above, we have the values of pa for all real values of o between —% and

+%, and for all imaginary values of the from i for this value, if 3 is a quantity contained

in the limits —% and +%. Now we will find the value of these functions for an arbitrary

real or imaginary value of the variable. To that end, we initially establish the fundamental
properties of the functions ¢, f and F. Because

fPa =1-cp%a,
F?a =1+ e,

by differentiating we have:

fafla = —cpaga,

Fa.Fla = éepaya,

Now, according to (2.) we have

¢'a=/[(1—-2p2a)(1 + 2p%a)] = fa.Fa.
Thus by substituting this value of ¢’ into the two preceding equations, we find that the

functions pa, fa, Fa are related by the equations

Ja = fa.Fa,
9. fla =—-c?pa.Fa,
Fla =épa.fa.

That established, denote two indeterminates by « and 3. We have

_ pofBFB+¢f.fa.Fa

pla+f) ) 1f?3_ e2c§.9020é-%2g l;ﬂ
a. fp—c.pa.pb. Fao.
10. fla+p8) = 1+ eQCfQDQEAPQﬁ ’
Flatp) = FoFB+cpapBfafs

1+ e22p2a.023



These formulas can be deduced at once from the known properties of elliptic functions
*)3; but one can also verify them easily in the following manner.

Letting r be the right side of the first equation in (10.), we have by differentiating with
respect to a:

<3T> AP fBFB+ pB.Fa.f'a+ pp.fa.Fa}
1+ e22p?a.p?p
(pa.fa.F(G + @ﬁ.fa.Foz).26202g0a,<p2ﬁ,g0’a
(14 e2c2p?a.p?3)? :

Substituting the values given in equations (9.) for ¢'a, f'a, F'«, it becomes

or\  faFa.fB.Fp3 2e22p?a.p?B.fa. fB.Fa.F3

<8a) T 14 e232R2a.028 (1 + e2c2p2ap?3)?

+<pa.g0ﬂ.{1 + 2 ap?BH—cAF2a + €2 f2a} — 2e2PpapB.p? 3. fa. F2a
(1+ e2cp2ap?B)? ’

Whence, substituting for f2a and F2a their values: 1—c?p?«, 1+e?p?a and simplifying,
one concludes

or\  (1- e2tp?a.p?B){(e? — ) — pa.pB+ fa.fB.Fa.F3} — 2e2ctpapf(p?a + ¢?3)
(5) e

Now « and 3 enter symmetrically into the expression for r; thus one will have the value

of ((%) by permuting o and (8 in the expression for (g—g). However, since the expression

B
This partial differential equation shows r is a function of a 4 3; thus

for (g—g) does not change value, we thus have ((%) — <8r>_

r=v(a+p8)"

The form of the function % is found by giving 3 a particular value. Suppose, for
example, that § = 0 with the condition that ¢(0) =0, f(0) =1, F(0) = 1. The two values
of r will become

r=¢(a) and r =Y(a).

3*) Legendre Exercices de calcul intégral.

4Abel himself proved this in ”Untersuchung der Functionen zweier unabhéingig veranderlicher Gréfien
z und y, wie f(z,y), welche die Eigenschaft haben, dal f(z, f(z,y)) eine symmetrische Function von z,
und y ist,” Journal Fur die reine und angewandte Mathematik, 1(1), 11-15.



Thus

and hence,

r=y(a+p) =platf).

The first of the formulas in (10.) thus indeed takes place.
In the same manner, we verify the other two formulas.

3.

From the formulas in (10.) we can deduce many others. I will show some of the most
remarkable: For short, I let

11. 14 é2*a.¢’8 =R.
By first changing the sign of 3, we obtain

pla+B)+pla—p) = M,
oot ) —pla—p) =220lata
2fa.ﬁﬁ

fla+pB)+ fla=p) = ,

12. A .
fla+8) = fla—g) = —2c .cpa.zﬂ.Fa.Fﬂ’
Fla+§)+Fla-p) =250,

Floa+8) - Fla—f) = 262.<pa.910%ﬂ.f0z.foz'

By taking the product of ¢(a + 3) and p(a — ), we find that

pa.fB.FB+ pb.fa.Fa ' pa.fB.FB—pb.fa.Fa
R R
Q2. f2B.F%6 — ©?B.fPa.Fla
R? ’

or by substituting the values of 23, F23, f?a, F%a in ¢ and po:

platf).pla=p) =

2o — 926 — 222048 + 2202 8.t
R2
(pPa = ¢*B)(1 + e*Pp’a.p?B)
R ’

platf).pla=p) =




now R =1+ e2c2p?a.p?3, thus

204 _ Qﬁ
13 pla+Bpla—p) = FoFr
Similarly one finds
( f206—02s026 F2a f25—6230204-F25
a+m< ) R = 7
_1-Pga— - FPPap®B | a8 - A+ Aptar?s
14. R R ’
Fla+e2p?B8.f2a  F?28+ e*p?a.f?3
Fa+ B).Fla—p) = g 0.f7a 4; /
1+ e2QPa+ 2B — 2Pl ap?B | FPaF?B — e (c? + €2)pPa.p?

R
4.

R

Letting 8 = £%, 8 = %4 and noticing that f(+%) =0, F(£%5i) = 0 we get

w w fa w T oo
9o g, 1 Tl QS B e
platy) R IRAGE Y 72 Fa
FUJ
Flat %)=
15. o PeEP=re
cp(a:tgz): :tLszfa, F(aiiz):¥4p%i'f7a;
-
flax Ti) = =2
2 fa
or:
( w 1l fo w o
plat D)= 218 sar ) =y L
Fla+t )= Vet 1
16. w i Fa2 - Fa pa
£ 20) = o Flat i) = £iy/(e + e
olax Zi) i Pl 5 ==/ EE A 5
: (e2+¢%) 1
+ Py =T
fla 22) P
From which one concludes at once:
w w w
<P(§+04)= @(z—a); f(§+04):—f(§—04)7
F(5 +a)=F(5 —a);
17.
p(Gita)= @(Fi-a) F(Fi+a)=-F(Fi-a)
w . w .
f(Gita)=f(5i-a)




18. gp(a:l:g) .cp(a—{—%i) ::I:Cie; F(a:i:%) .Fozz%;f(a:l:%i) Ja=

b
2 e

Letting o = 3 and %4, we find that

(w_’_w‘) 1 f(w+w,) lF(w+w,) 1
—+ —i) == —+ —i) == —+ —i) ==
P2 T T TR T \2a T2 T
Replacing o with o+ % in the first three equations in (17.) and replacing o with o+ 54
in the last three, gives the following

19 { plat+w)=—pa; fla+w)=~fa; Flat+w)=Fa
ola+wi) = —pa; fla+wi)=fa; Fla+wi)=—Fo;

and by replacing o with o + w and « + wi:

2w+ a) = pa; pRwi+ a) = pa; plw+ @i+ a) = pa;
20. fQRw+a) = fa; f(wi+a)=fa;
Flw+a)=Fa; FQ2wi+ a)= Fa.
These equations show that the functions g, fa, Fa are periodic functions. We deduce
without trouble that when m and n are two positive or negative whole numbers:

o((m+n)w+ (m—n)wi +a) = pa; p((m+n)w+ (m—n+1)wi+a)=—paq;
21. f@2mw+nwi+a) = fa; f(2m+ 1w +nwi+ a) = —fo
F(mw+2nwi+ o) = +Fa; F(mw+ (2n+ 1)wi + o) = —Fa.

These formulas may also be written as:

o(mw + nwi + a) = +(=1)""".paq,
22. flmw+nwit+a)=(-1)".fa,
F(mw + nwi £ a) = [(-1)"].Fa.

5

We make note of these particular cases:

p(mw ta)=+(-1)"pa; @nwi+a)==+(—1)".pa;

22. flmwta)=(-1)".fa; fhwita) = fa;
F(mw+ a) = Fa; F(nwi+a)=(-1)".Fa.
d.
°In the original, [(—1)"] was written as (—)".



The formulas that we have just established show that we will have the values of the
functions pa; fa; Fa for all real and imaginary values of the variable, once we know them
for real values between § and —% and imaginary values of the form i, where 3 is between
% and —%.

Indeed, let us suppose that one wants the values of the functions p(a + 5i), f(a+ 5i),
F(a+ i), where a and (3 are any real quantities. Putting 37 in place of 3 in the formulas in
(10.), it is clear that the three functions concerned will be expressed by the functions: pa;
fa; Fasp(Bi); f(Bi); F(Bi). Thus it only remains to determine the latter. Now, whatever
the values of o and 3, we can always find two integers m and n, such as o = m.w + o/,
f =nw £ (', where o/ is a quantity between 0 and +%, and ' between 0 and +%. Thus
in virtue of equations (22.), substituting the previous values of « and 3 gives:

pla) = plmwta) = £(-1)".gd,
fa) = flmwtal) = (-1 fd,
Fla) = Flmw+d)=Fd,

p(Bi) = p(nwi+ i) =+(-1)"p(8),
F(8i) = flnwit #i) = F(53),
F(Bi) = F(nwi+fi)=(-1)".F(8).

Therefore the functions pa, fa, Fa, (5i), f(8i), F(8i), are expressible in the way we
just said, as will be the functions p(a + 5i); f(a+ Bi); F(a + (5i).

We saw earlier that oo is real from a = —% to a = +% and that @ is real from
a=-Ftoa=+%5.

Hence, in virtue of equations (22.) it is clear:

1) that ¢(«) and @ are real for all real values of «; pa is contained between —% and

—i—% and @ is contained between —% and +%;

2) that ¢(«) vanishes at & = mw and @ at & = mw, m being a positive or negative

integer; but ¢(«) does not vanish for any other real values of a.
Noticing that fa = /(1 — 2¢2a), Fa = /(1 + e?p?a), it follows from what we have
just said:

1) that the functions f(«); F(«); f(«ai); F(ai) are real for all values of «;

2) that f(«) is contained between the limits —1 and +1 and F'(«) is contained between

the limits +1 and +/ (1 + i—z), so that Fa is positive for all real values of «;

10



3) that f(«i) is positive between the limits +1 and <1 + Z—;) and F'(«i) between the

limits —1 and +1 for all real values of «;

4) that f(a) vanishes at @ = (m + 1) w and F(ia) at o = (m + 3) @; but for no other
values of a.

Take note of the following corollaries that can be deduced from formulas (22.):
1) Let a = 0. In this case notice that ¢(0) =0, f(0) =1, F(0) = 1. This gives

o(mw + nwi) =0,

23. f(mw + nwi) = (-1)™
F(mw + nwi) = (—1)".

2) Let a = %. In virtue of the equations:

sO(;):%; f(%)zo; F<“2’):g

one will have

@
24. f
F

((m2
1 ‘
<(m + B w+nwi | =0,
((mrg)err=
3.) Let a = F4. In virtue of the equations

sﬁ(%i) = é; f (%z) = :; F(%Q —0;
we have:
o (mw+ (n+ 3) wi) = (_1)m+n£,

f(mw+ (n+3) wi) = (—l)m.g,
F(mw+ (n+ 1) wi) =0.

25.

4.) Let a = ¢ 4 Fi. In virtue of the equations above,

o ((m+ L)+ (n+ ) i)
26. f((m+%)w+(n+%)w1)
F((m+3w+ (n+3)wi)

6.

1
?
1
0

11



Equations (23.), (24.), (25.) show that the function ¢(«) always vanishes when o
is of the form o = mw + nwi; that fa always vanishes when « is of the form a =
(m + %) w + nwi, and Fa always vanishes when « is of the form o = mw + (n + %) wi.

However, I claim that for all other values of «, the functions pa, fa, Fa will necessarily
have a nonzero value.

Indeed, let us suppose that

p(a+ i) =0,

a and [ being real quantities. By virtue of the first formula in (10.), this equation can be
written as follows:

wa.f(0i).F(Bi) + ¢(0i).fa.Fa
1+ e2c2p?ap?(Bi)

Now the quantities pa, f(B3i), F(5i) are real and ¢((37) is of the form i.A, where A is
real; thus this equation cannot hold unless both:

=0.

p().f(Bi).F(Bi) = 0; ¢(Bi).fa.Fa=0.

These equations can only be satisfied in two ways, namely, by letting

gp(a) =0, 90(61) =0,

or

f(B).F(pi)=0, fa.Fa=0.
The first two equations give @ = mw; = nw. Noting that Fa and f(fi) can never

vanish, the latter two equations give

fa=0, F(8i)=0,

az(m%-;)w, ﬁz(n%—;)w.

However for these values of a and (3 the value of p(a + (3i) becomes infinite; thus the
only values of o and 8 are @« = mw and 3 = nw, and consequently, all the roots of the
equation

where

can be represented by



In the same manner, we find that all the roots of the equation

can be represented by

and those of the equation

by

The formulas in (26.) show that the three equations

1 1 1
67.]0(1.):671?(‘73):7

will be satisfied if = is given a value of the form

1 1
30. x= <m+2>w+<n+2>wi.

Now one can demonstrate that the equations in question have no other roots.
Indeed, if

p(z) =

b1 —i 1 . b1

e A e DM I C-)

F(x) =

the equations in question entail the following:

(o550 1(- )= P 3) =0

but in virtue of what we just saw, the equations give respectively:

T—5 - Ft=nw+nwy T 21—(m+2)w+nwz,

x—%zmu}—k(n%—%)wi;

that is to say: for the three equations one will have:

13



Q.E.D.

Having found as above all the roots of the equations

() =0; f(z)=0; F(z)=0;
1

I now want to seek the roots of the more general equations

p(r) = pa, f(z)=fa, F(z)=Fa,

where a is an arbitrary real or imaginary quantity.
First consider the equation

¢(x) — pa=0.
In the second equation of formulas (12.), by setting

r+a x—a
2 ) ﬂ_ 2 )

o =
we find that
20 (*32) -f (%3%) F (33°)
L+ 2?0 (552) ¢ (55°)

This equation can only hold in one of the five following cases:

YT — pa = =0.
1. If p (xz;“) =0, then z = a + 2mw + 2nwi,

2. If f (%5%) =0, then z = —a + (2m + 1)w + 2nwi,

3. If F (%) =0, then z = —a + 2mw + (2n + 1)wi,

,then x = a+ (2m + 1w + (2n + 1)wi,

Ol

4. if ¢ (252) =

5. If o (Z£2) = §, then 2 = —a + (2m + 1w + (2n + 1)wi.

14



The solution of these five equations are given in formulas (27.), (28.), (29.).
Having found those values of z, we should discard those given by the formula

r=—-a+ (2m+ 1w+ 2n+ 1)wi,

because such a value of x gives, by virtue of (22.):

pr = —pa,

while one must have px = pa; however the other values of x expressed by the first four
formulas are allowed. As we see, they are given by the single formula:

3l. 2z = (=1)""".q 4+ mw + nwi.

This is therefore the general expression for all the roots of the equation

T = Qa.

In the same manner, one finds that all the roots of the equation

fr=fa

can be represented by the formula

32. x=4a+ 2mw + nwt,

and all those of the equation

Fx = Fa,
by the formula

33. = +a+ mw + 2nwz.

§. 11
Formulas that give the values of p(na), f(na), F(na) expressed as rational
functions of pa, fa, Fa.

9.

15



Let us start again with the formulas in (12.). Setting a =

nB in the 1st, 3rd, and 5th,
they become:
p(n+1)f=—p(n—1)8+ iw(”%fﬂ 8,
Mo 3 D=5 2 "? 12,
Fln+ 18 = ~F(n— 1) + 2890

where R = 1+ c?e2.0?(nf).0?3.

These formulas give the value of p(n+1)5 in p(n—1)F and ¢(nfB); that of f(n+1)5 in
f(n—=1)B and f(nB), and that of F(n+1)3 in F(n—1)5 and F(ng3). Thus by successively
setting n = 1,2,3, ..., we find the successive values of the functions:

2(28); 9(30); 9(48) ... o(nB),
F(28); F(38); F(48)... F(nB),
F(28); F(38); F(4B)... F(nB)

expressed as rational functions of the three quantities

o B Fp.
Letting, e.g., n=1, we have:

©(28) = 2.p8.[B.FB

1+e2c2p43 72
35. f(2ﬁ) -1+ 1+622f02,8 o137
F(28) = -1+ %

The functions ¢(nf), f(nB), F(nB) are rational functions of 3, f3, F3, and they can
always be reduced to the form £

o where P and () are polynomials in g3, fG, F3. It is

likewise clear that for the three functions we consider, the denominator will have the same
value. Thus let

35. w(nm:g;, F(nB) = SZ’ F(nf) = gn

We also have

o+ 1f =T g g = T g1y = Dot

Qnt1’ Qn+1 Qi
Py, Py e Pia
pn—1)= in,f( )ﬁ_Qn_fF(n 1B =

n—1

Substituting in these values, the first formula of (34.) becomes:

16



Pari __ Poor 2fB.FB.5*
Qn+1 Qn-1 1+ 0262¢2ﬂ,%

)

or

Pn+1 _ _Pn—l(Q% + 0262(p2.P7.2L) + 2PnQnQn—1fﬁFﬁ

Qn+1 Qn-1-(Q2 + e2c2p?3.P?)
Equating the numerators and the denominators of these two fractions, we have

36. Pn+1 = - nfl(QzL + 02629025~P3) + 2fﬁ-Fﬂ'Pn-Qn-anly
37 Qpy1 = Qn—l(Q?L + chQQOQﬁ.Pg).

The second and third equations from (34.) will give in the same manner:

38. Py = —P,_1.(Q)+ 0’ B.P2) +2fBP).Qn.Qn1,
39. Py = —P'(Qn+EPP*B.PY) + 2FB.P).Qu.Qn1.

By setting n = 1,2,3..., in the four formulas and noting that:

Qo=1 Q=1 R=0 P =gp
Pi=1; P/=f8 Pl=1; P'=Fp;

one can successively find the polynomials Q,,, P,, P}, P/ for all values of n.
For brevity, let

40. B ==z, fB=vy, F3=zand
41. R, = Q2 + 2?2 P2.

The previous formulas give:

Qn+1 = Qn—1~Rn7
49 P11 =—-P,_1.Ry,+ 2yz2.Py.Qn.Qn-1,
. Py =P, 1Ry +2y.P,.Qun.Qn1,

P/ =—P' | Ry+22P'QnQn 1.

Letting n = 1, 2,, we have:

R1 = Qn-1.Rn,
Q2 = QoRy =1+ e*c?at,
43. P, =—PyR1 + 2yzP,.Q1.Qo = 2xy2z,

P} = —PlRy +2yP|.Q1.Q0 = —1 — 22z + 242,
P) = —PYRy + 22P'.Q1Q0 = —1 — 2%zt + 222
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Ro = Q3 + 2222 P} = (1 + e2c?ah)? + 2?42y 22,
Q3 = Q1R2 = Ry,

Py = —PiRy + 2yzPQ2Q1 = —x Ry + 2y*2%1.Q2

44. = 2{2y%22.Q2 — R»},

Pé = —P{.RQ + 2yP2’Q2Q1 = —y.R2 + 2yP2/Q2

= y{2Q2P; — R»},

L P3” = Z{QQQPé/ — RQ}

Continuing in this way and noting that 32 = 1 — c?22, 22 = 1 + €222, we easily see that
the quantities:
P Py
2y+1’ P2/{n’ 22+1

2

Q Poy, Poni1 Pl
Ty TYyz’ T 9 2n

are polynomials in the three quantities z2, y2, z
for an arbitrary integer n.
This shows that the expressions for p(n3), f(ng), F(n3) are of the following form:

e(2nB) = eB.fB.FB.T, ¢(2n+1) = ¢B.1",
45. f(2nB3) =Ty, f@n+1)3=fp1",
F(2np) =Ty, F@2n+1)8=Fp.T",

where T, etc., represent rational functions of the quantities (p3)?%, (f5)2, (F3)2.

, and consequently, also one of these

6. III.
Solving the equations

p(nB) =L, f(np) =G, F(nB)= .
10.

According to what we have seen, the functions ¢(nf3), f(ng3), F(ng3) may be expressed
rationally in z, y, z. The contrary case does not happen, because the equations in (35.)
are in general of very high degree. They have for this reason a certain number of roots.
We will see how one can easily express all the roots using the functions ¢, f, F.

A. Consider first the equation p(nf) = %, or Qn.p(nB) = P,, and let us seek all the
values of x.

It is necessary to distinguish two cases, according to whether n is even or odd.:

1) If n is an even number.

According to what we saw in the preceding paragraph (45.), we have in this case

e(2nB) = ¥(a?).2.y.2,

that is to say, in virtue of the formulas

18



y=+(1-c%x?), z=+/(1+e2?),
p(2nB) = 2 (2*)./[(1 — 2a?)(1 + e22?)].

Thus the equation in x will become,

©*(2nf) = 2% (P(2?))2.(1 — 2 (1 + %2?).

Designating the right side as 6(z?), we have

¥*(2n8) = 0(2?).

One of the values of x is ¢, so we have

46.  ©*(2nB) = 0(¢*B),

an equation that holds for any value of 3. To find the other values of x, that is, an
arbitrary root x = pa, we must have

p?(2n8) = 0(*a).

Now substituting « into (46.) instead of 3, we get

©?(2na) = B(%a), thus :
47 ©*(2n8) = ¢*(2nw);

an equation that reduces to these two:

¢(2na) = ¢(2nB) and (2na) = —p(2ns).
The first gives, in virtue of (31.),

2na = (—=1)"H2n8 + mw + pwi,

where m and p are two arbitrary positive or negative integers (including zero).
The second gives the same values for 2ma;, but of opposite sign, as it is easy to see by
writing as follows:

o(~2na) = p(2nB).

All values of 2n« that satisfy equation (47.) can thus be represented by

2na = + [(—1)™2nB + mw + pwi] .
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From there one deduces the value of «. Dividing by 2n, we get

m 0o
:i[—lm”. oy }
a (1) B+ 5@t 5 @i
With the value for «, we get
18, pa=Fp|(-1)"G 4wt Lowi] =
2n 2n

The values of x are described by this expression. Thus they will be given explicitly by
letting the numbers m and p be integers between —oo and oco. However, to insure they
are distinct, it is enough to let m and p be integers less than 2n. In fact, whatever these
number are, we may assume they can always be reduced to the following form:

m=2nk+m', u=2nk+u,

where k, k' are whole numbers and m/, i/ are integers less than 2n. Substituting these
values into the expression for x, we get:

I, m’ [L/
r=2p (-1)" B+ —w+ —wi+kw+ K wip,
2n 2n

Now in virtue of (22.), this expression can be simplified to

/ /
19 z=4pd (- a4 4 Kt
2n 2n

This value of z is of the same form as the preceding in (48.), only m and u are replaced
by m’ and p/, which are both positive and less than 2n; thus one obtains all the distinct
values of by merely letting m and p be all the integers between zero and 2n inclusive.
All the values are necessarily distinct. Indeed, suppose for example that we have

i {(~1)" B+ P + fhomi |
= +op {(—1)"””5 + Jrw + %wz} ,

from this it follows, according to (31.);

!/ !/

(—1)™' B Z‘—nw + %m — {(—1)m+“ﬂ +

m
—Ww

n ﬁm‘} + ko + Ko,
2n 2n

k and k' integers.
This equation gives:

W=K2n+tpu m=k2ntm, (=1)"H =L£(=1)"FH

20



The first two equations cannot hold unless ¥’ =1, k=1, ¢/ =2n — pu, m’ = 2n — m.
The latter becomes:

G e S D
from which one concludes:

(_l)nm+2,u -1

)

an absurd result.

Thus all the values of x given in formula (48.) are distinct if m and p are positive and
less than [2m)].0

The total number of values of z is, as it is easy to see, equal to 2(2n)? = 8n?. However,
the equation ©?(2n3) = 6(x?) cannot have equal roots, because in this case, one has
%f)) = 0, which gives x a value independent of 3. Thus the degree of the equation
©*(2nB3) = 0(x?) is equal to the number of roots, that is, to 8n?. If for example n = 1, one

will have the equation

42?1 - *a?)(1 + e?a?)

¥*(28) = 0(2%) 1+ 224)? ’

or

(1 + e2c2ah)2.0%(28) = 422 (1 — P2 (1 + €2a?),

and according to formula (48.) the eight roots of this equation will be

x=2p(—f+ Zi), v =+p(B+ % + Fi).

2) If n is an odd number = 2n + 1.

. P,
In this case =2»+L
Q2n+t1

is, as we saw, a rational function of x and as a consequence the
n
equation for z will be:

Poni1
Q2n+l

Precisely like in the preceding case, we find that all the roots of this equation can be
represented by

50.  @(2n+1)3 =

1. z=|(=1)"+n mn b i
5 x <p<( ) ﬂ+2n+1w+2n+1wz,

5The original read “... and less than m.”
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where it is necessary to let m and p be all the integers from —n to +n inclusive. Thus
the number of distinct roots is (2n4-1)2. This is also the degree of the equation in question.
We can also express the roots by

— (—1)"tH, i
z=(1) <5+2 17 +2n+1m>'
If for example n = 1, one will have an equation of degree 3% = 9.
1.) gives the following 9 values for z:

Formula (5

+

R i
~— ~—

| DD @
|
| ol ol wIE wlE

R N D .

DD

+f

€ wl€ wlE wle T
_l’_

ol eslg eslg esl)

_l’_

B. Now consider the equation

/

Qn

and let us find the values of y that satisfy this equation. The function 5 is, as we saw

52.  f(np) =

above, rational in y: setting CTZ = 9(y), the equation in y is

f(npB) =1(y).
One of the roots of this equation is y = f3, thus for arbitrary G:

53. f(nB) =¥(fB).

To find the other values of y, let a be a new unknown such that y = fa. We have

f(nB) = d(fa);

now in virtue of (53.), the right hand side is equal to f(n«a). Thus to find a, we have

the equation:

f(na) = f(ng).

In virtue of (32.), this equation gives as the general expression of na:
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na = tnl + 2mw + pwt,

m and u being two positive or negative integers, zero included.
From here we conclude

2
a:iﬂ—k—mw%—ﬁwi,
n n

and as a consequence:

fa:f<iﬁ+2mw+”m> —y.
n n

This is the general value of y. Now to get the distinct values for y, I claim that it is
enough to take 8 with the + sign, and to let m and p take on all the integers less than n.
Indeed, since we have f(+a) = f(—«), initially we get:

f(—ﬂ—l—mw—i-'uwi):f<ﬂ—2mw—'uwi>.
n n n

n

Thus, in the expression for y, one can always take 3 with the + sign. Hence all the
values of y are given by the expression

2
54, y=—f <ﬁ+mw+“m’> .
n n
Now whatever the numbers m and p, we may suppose that

m=kn+m', u=kn+y,

where k, k', m/, j// are integers, the two latter being both positive and less than n.
Substituting we get

2 / /
y:f(ﬁ—i— mw—f—'uwi—l—ka—i-k’wi).
n n

Now in virtue of (22.), the right side of this equation is equal to

2 / /
55. f<ﬁ+ mw+“m> —y,
n n
a quantity of the same form as the right side of (54.); only m’ and ' are positive and
less than n. Thus etc.
Letting m and p take on all the possible values less than n, one finds n? values for y.

However in general, all these quantities are distinct. Indeed, suppose for example,
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2m 20 !
f <ﬂ+w+“m‘) = f <ﬂ+“+“m’> ,
n n n o n

in virtue of (32.), by letting k, k' be two integers:

/ /

P
Mo+ i =2 o+ B i 4+ 2w + K wi,
n

B+ —w+=

n n

Since § can have any irrational value, it is clear that this equation can not hold unless
one chooses the upper sign (+) on the right side. This then gives

2 2 / /
—mw—i— Hwi _ w+ &wi+2kw—|—/€'wi,
n n n n

from which we deduce by equating the real and imaginary parts:

m=m'+kn, p=p +k'n,
absurd equations, given that the numbers m, m/, u, and y/ are all positive and smaller

than n. So in general the equation

f(nB) = (y)

has n? distinct roots and no more.
Now generally all the roots of this equation are different. Indeed, if two were equal, we

would have both:

f(nB) =(y) and 0 = ' (y),

and this is impossible, if we note that the coefficients of y in 1 (y) do not contain f.
The general equation (52.) is necessarily of degree n?.

C. The equation
P/I
56. F(nB)=—-",
() = 5~

can be treated in absolutely the same manner with respect to z as the equation f(ng) =
L was with respect to y, giving the general expression for the values of z:

Qn
m 2u
57. z=F |0+ —w+ —wi ],
n n
where m and p are positive integers less than n. There are n? values of z, and in general

they are distinct.
Therefore the general equation (56.) is of degree n?.

11.
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Above we found all the roots of the equations

/ /!
pnd) = 7=, Jf) = 2 F(np) =
Qn n Qn

roots that are expressed by the formulas in (48.), (51.), (54.), (57.). All these roots are
different, except for the case of particular values of 3; but for these values, the distinct
roots are given by same formulas. — In the last case, a certain number of the values of the
quantities x, y, z will be equal; but it is clear that all the equal or unequal values will be
nevertheless the roots of the equations concerned. This can be seen by making 3 converge
towards a particular value, which gives equal values for z, or y, or z .

Letting 3 = £ in formula (48.), the equation 58. p*a = %, has roots z = 4 ((—1)™ & + 2w + Looi)
where m and p take on all the positive integers less than 2n. »

on+1

The same for formula (50.), letting 8 = 5% we have pa = Osy» Which has roots

59. = (=1)™FH,
z=(=1) ¢<%+4 o+ 1

m and p taking on all the integers from —n to +n.
Finally in (52.), (56.), letting 8 = , we have the equation foa = %, which has roots

a mw—i—,uwz')

2
60. y:f<a+mw+uw0,
n n n
and equation Fa = % has roots
a m 2u
61. z=F|—+—w+ —wi ],
n o n n

where m and p are contained between the limits 0 and n — 1 inclusive. If n is odd
= 2n + 1, we may suppose that

y=(-1)".f <2nOfH + oW + g @i )

— (—1)M a m 123 ;
z=(-DmF <2n+l T oY T @),

where m and p take on integer values from —n to +n.

In all these equations the quantity a can have an arbitrary value.
Like the specific case, we must notice the following;:

1) Letting o = 0 in (58.) and (59.), we get the equations

P; =0, the roots are © = +¢ (%w + %wz)

(the limits of m and p being 0 and 2n — 1),
62. Py, 11 =0, the roots are x = ¢ (ﬁw + T‘jrlzm)

(the limits of m and p being —n and + n).
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Zi) =0,

2) Letting o = % in (60.) and letting o = T4 in (61.), noting that f(%) = 0, F(

we obtain the two equations:

63. P, =0,the roots are y = f ((2m + )% + Lwi) } ghznl(lirr;tzrzf
"_ m 4 L@
64. P, =0,the roots are z = F' (n + (2p + 2)n) 0andn—1)
i) = %, we get the equation

3) Letting o = % + %4 in (58.), noting that ¢(% +

Q3, =0,

whose roots are:
x=*p m—i—l(—l)mﬂ‘ 4 u+1(—1)m+“ @
2 2n 2 |

The values of z must be equal in pairs and one will easily see that the distinct values

65. x= TR A P i
AR AR I U Y B

by letting m and p take on all the integer values from 0 to 2n — 1. These are thus the

can be represented by

roots of the equation
Q2, = 0, with respect to x.

Likewise, letting a = & 4 54 in (58.) gives the equation

Q2n41 =0,

whose roots are:

+ (n+3 )2n+1i|

(—)mTigp [(m + )2n+1

xr =
66. Yy = (_1)mf (m + )2n+1 + (M + )2n+1 )
z = (—1)“F (m + )2n+1 + ([L + )2n+l ’

m and p taking all the integers from —n to +n
Among the values of x, y, z, we must note those that correspond to m=n, y=n

Then we have

v = (-1)"p(§ + F) = 5
y=(D"f(5+Fi) =7,
z=(-1)"F(%+%i)=3

[\~
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These infinite values show that the equation Q2,+1 = 0 is of degree one less than the
equation it came from. By discarding these values, the (2n + 1)? — 1 remaining will be the
roots of the equation Qay,4+1 = 0.

§. IV.
The algebraic solution of the equations
_ Ponta _ Pl R
o= Q2n+1’ fa= Qan+1’ T Q241
12.

We saw in the preceding §, how we can easily express the roots of the equations in
question using the functions ¢, f, F. We will now deduce the solutions to these same
equations, or determine the functions (%), f(), F(%), as functions of pa, fa, Fa.

n
As we have

() =2 (5 (2)

we may assume that n is a prime number. Let us first consider the case when n = 2,
and then when n is an odd number.

A. Expressions of the Functions ¢(5), f(5), F(

[N][e)

).
13.

The values of ¢(§), f(5), F(5) can be found very easily in the following manner. In

formulas (35.), suppose 3 = §, set
a « a
— =, — -1, — F (—) s
o ‘p<2> 4 f(z) : 2

y2 _ 0216222 z2 + €2y2$2

= F =
o) =T gy Pl =T a0

or, by substituting the values of y? and 22 and z2:

this gives:

1— 2222 — 2e2gt ) 1+ 2e222 — 2244
ey (8% =
1+ e2¢244 ) 1+ e2c274

fla)

These equations give

i

217222 2221 2.2
Lyl 202 et 4 )
1+€202[L‘4 1+6202$4
2221_22 2(1 2,.2
Fa_ 1226 0-c2) pg 2 M)
1+ e2c2xt 1+ e2c2xt
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which gives

Fa-1 —
a =e’a?, L= ja = 22,
1+ fa Fa+1
and from this, noting that y? = 1 — ?22, 22 = 1 + e222:

22:Fa+fa yQZFoz—I-foz'
1+ fa’ 1+ Fa
From these equations one concludes that, extracting the square roots and replacing =,

y,  with their values go(%), f(%), F(%)

ey Gi) =1 (),
F(3) =/ (5are), F(5) =/ (5ee).

Such are the simplest forms that one can give for the values of the functions ¢(5), f(5),
F(5). In this manner we can express ¢(5), f(5), F'(§) in terms of fa, Fa algebraically.
In the same way, ©(F), f($), F'(§) are expressible in f(5), F(5), and so on. Thus in

general, the functions ¢(55), f(5%), F'(57) can be expressed by means of the extraction of
square roots of a function of three quantities p«, fa, Fa.

Applying the above bisection formulas to an example, suppose a = %

2.
So we have f(¥) =0, F(%) = 7“(e+c) and thus by substituting:

o=y (o) = 1/ VT ),

IS

w 2V (2+¢?)
f(Z): l-ic-l\/m’
F(§) =G V(e +c2)
or
e2+4c2
o= VI
y(eev/5)

B. Expressions for the Functions ¢(525), f(5:57), F(527) in algebraic functions
of the quantities pa, fa, Fa.
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14.

To find the values of ¢(5,%7), f(557), Fga7) in v, fa, Fa it is necessary to solve
the equations

/ /!
oo — Poptq fa _ Do Foy — Pony1
= 7 =

Q2n+1 Qni1’ Qant1’
that are all of degree (2n + 1)2. We will see that it is always possible solve these
algebraically.
Let
Rl 2mw
8. pii= Y (04 )
m=—n
and

+n .
9. wi= 3 0o (54 21T s = 55 o (8- =),

“ n+1
n=—n pn=—n

where 6 is an arbitrary imaginary root of the equation #?"*! —1 = 0.
That stated, I claim that the two quantities

VBB and (YB)* ! + (v 8)2 T

can be expressed rationally in p(2n + 1)0.
First write ¢ as follows:

" 2mw 2mw
1B = wﬁ-mz:;-{tp<ﬁ+2n+l>+w<ﬁ—2n+1)

B S el =€ =

1+ e (30).028

—

we see that 13 can be expressed rationally in ¢3. Thus let p15 = x(¢f). In similar

manner:
2uot 2utot
+ = +
21 (5 2n +1> X(‘p<ﬁ 2n+1>>

(e8GR FGET) + (GhT)-fB-F
X 1+€202.(p2(§n+1). 2[3

)
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or by setting 3 = a:
2uwot 2uwi 2uwot
F = =
f<2n—|—1> <2n—|—1> “ S‘7<2n+1> b,
and by substituting the values of /(1 — ¢?z?) and /(1 + e2z2) for f3 and Ff3:
2uwi ar +b.4/[(1 — 22?)(1 4 €222
%(ﬁi p )ZX( VI = 22 >}>;

2n +1 1+ e2¢2b2 .22

where x designates a rational function. The right side of this equation can be put into
the form

Ry + R /[(1— ) (1 + %),

where R, and RL are rational functions of z.
Thus

o (54 ) = By T N )

Substituting this into the expressions for ¥3 and ¥ 3, we get:

+n +n
vh= 3 (+0)"Ru+ V(1 -1+ e22)]. Y (+0)" R,
0, e o
1= Y (+0"R, — (1 - 2a?)(1+e2a?)]. Y (+0)".R),.
p=-n p==n
+n
Now R, and R), are rational functions of x as well as the quantities Z (+6)".R,, and
n=—n
+n
> (+0)".R),.
pu=-n

Therefore by raising 3 and 11 3 to the (2n + 1)st power, the two quantities (¢3)2"+!
and (¢103)?"*! can be put into the form:

WB)" =t +1'/[(1 — a?)(1 + ea?)],
(W18 =t — ' /[(1 — 2a?)(1 + e2a?)],

t and ¢’ being rational functions of z. By taking the sum of the values of (¢3)
(11 8)?"*1 we have

2n+1 and
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(W) + (11 B = o

Thus the quantity (13)*" ! + (13)?*" ™! can be expressed rationally in z. Similarly for
the product 3.1, as we see from the equations in (70.).
Thus we can make

' (V8P + (u B)*" T = (),
A(z) and A(z) designating rational functions of x. Now these functions have the

property of not changing value when we substitute forf x another arbitrary root of the
equation

P
Q2n+1

First consider the function A(x). Setting the value of x = ¢ we have

VBB = Aph),

from which we conclude, substituting 3 + ngkfl + 22]::"11 in place of j3:

2kw 2k wi 2kw 2k wi 2kw 2k wi
A - . .
[9"<5+2n+1+2n+1>] w<ﬁ+2n+1+2n+1> 1 <ﬂ+2n+1+2n+1>

That given, note that:

“+n “+n

k
2. > wmAk)= Y dm)+ Y [W(m+n) - p(m—n-—1),
m=1

m=—n m=—n

setting 8 = 6+ Qikfl in the expression for %3, we have :

2kw \  « 2(k+m)
‘p1<ﬁ+2n+1>_ 2 ‘p<ﬁ+ on + 1 ”)

m=—n

o 3 o (5 2atme) (5 2mono )]

— 2n+1

now: i (8 + 24527 0) = o (94 2o —20) = p (54 i),
thus:

2kw
73. 1 <ﬂ+ o+ 1> = @1P.
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Substituting [ + 22’; ff + 2271’:{"1 in place of § in the expression for 13 we find

oKwi  2kw o 2k + pwi 2w
= o
w<ﬂ+2n+1+2n+l> MZ_:H ¢1(ﬁ+ o+ 1 +2n+1>’

now in virtue of (73.):

2(K' + p)wi 2kw 1\ 2(k + p)wi
¢1<5+ o1 angt) 0T Tt )

thus

2k wi 2kw 2(K' + p)wi
o
¢<B+2n—|—1 2n—|—1> Ze *01< m+1 )
In virtue of (72.) we have

+n ;
2(K + p)wi
n
2. 0o <5+ 2n + 1

p=-n

.y Rl 2,uwz ntak 2(p + n)wi
=0 : 2{: GM#H B+ +‘§E: O TR ﬂ'+“7z;qiigf

pu=-n
K .
1k 2(p—n—1)wi
_ gr—n 1 k'
> o (54 20D,

2(p—n—1Nwi) 2(p 4 n)wi N 2(p + n)wi
@1(54- 1 >—<P1<ﬁ+2n+1 —QYM>—<P1<5+2TL+1 >,

we get

2k’ i 2kw ,
4. =07" yp.
’ w<ﬂ+2n+1+2n+1> Ve

In the same manner one can also find

= 0F 4 3.

k'woi 2kw >

¢1<ﬁ+2 1 1

These two equations give
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¢<5+2kw+2kIWi)-¢1 <B+2k‘w—|—2kz’wi> — WBas,

2n+1 2n+1
k? k/ . 2n+1 k k/ . 2n+1
e L e ) | I (R T

In virtue of these equations we obtained, substituting in the values of ApB) and A1 (pf),
and (3 + 22k i place of G:

2n+1
2k 2k! i
ApB) = A [‘P <ﬁ+ W)} )
k k'wi
nos) = o (5+ 5B

Now ¢ <ﬁ + %ﬁm) expresses an arbitrary root of the equation

Popt1
Qant1’

Thus as we claimed, the functions A\(z) and A\ (z) have the same values whatever the
root we put in place zx.

Hence, let xg, x1,x2, ..., Ton11 be these roots. We have

e(2n+1)p =

M) = 5 (M0) + M) + o Alwan)},
1

A1 (x) {M(xo) + Mi(x1) 4+ - + Ai(zan) }-

T on+1

Now the right hand side of these equations are symmetric rational functions of the

roots of the equation p(2n + 1)5 = 52#111. So A(z) and A1(z) can be expressed rationally

in ¢(2n + 1)5. In equations (71), making

A=) = B, A = 24,

gives

(wﬁ)2n+1-(wlﬁ)2n+l _ B2n+1; (wﬁ)Qn—&-l + (w1ﬁ>2n+1 — QA,

from which we conclude

+n .

p=-n
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15.

Having found the value of 13, we easily deduce those of ¢1 .
Indeed, by successively taking all the imaginary roots of the equation §2"*! —1 = 0 for
0, indicating the corresponding values of A and B for Ay, By, As, By etc., we obtain:

2n+1 " 2uwi
\/[A1+\/(A%—B%+1 Zngm( n+1>’

n=—n
2n+41 2uwi
Ao+ (43— B = 3 0
Yo+ =B = 3 o (54 221,
H=—n
n 2uwoi
Q*Q/[Aznﬂ/(A%n—B%:“ >t (m . 1),
pn=-—n
Similarly knowing the sum of the roots:
o w  2uwi o Qi
Y Yot mrtagn) - Lot nt):
m=—-n —n p=—n

which equals (2n + 1)p(2n + 1)3 (as we will see later). Adding these equations term
by term, then multiplying the first by 6, k¥ the second by 07 ¥ the third by 05 k.. and the

(2n)th by 65F, we get:
- k k k k 2w
M;n(eg + 0T 0T 405+ 1) <ﬁ+ 2n+1)
2n
= 2n+1).o2n+1)F+ Z 9;k- 2n+§/[14u + (A;QL - Bﬁnﬂ)k

p=1
Now the sum
T+ 08F poh o oyt

reduces to zero for all values of k except for k = p. In the latter case, it equals 2n + 1.
So the first term in the preceding equation becomes

(2n+ 1)1 (ﬂ 4 kot ) ,

2n+1
substituting and dividing by (2n + 1), we thus have:
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2kwot
6. e <5+ 2n+1> -

w(2n+1)5 + {9;’c +\/ [A1 + /(A3 — B + 05 * +\/ [A2 + /(A3 = B3" )] + ...

2n+1"

o 0 g+ 3, — )

For k = 0, we have:

1
2n +1

-+ +\/ [Azn + 1/ (45, = B3 ).

7. 1 =92n+1)5+

{ 2n+§/[Al N (A% B B%n+1)] + 2n+§/[A2 + (A% o B22n+1)] —+ ..

16.

Having thus found the value of 13, we must find 3. Now this can be done easily as
follows:
Let

+n +n 2
B =Y 0™ <ﬂ+21”f1>; b= Y 0" (ﬂ— Qﬁ"l),

m=—n m=—n

we have

. < 5y 2me > _ PBS(ED)-F(3ED) + [BFBo(3)
2n+1 1+ 6202.cp2(—227ﬁw1).g02ﬂ '

From there it follows that one can put

pafp =1+ fB.FB.s; w38 =1 — fB.Ff.s,

where r and s are rational functions of (3.
From there we conclude

' (V2B8)>" 1 4+ (38)"" ! = xa(eh),

x(pB) and x1(pf) being two rational functions of f.
That stated, I claim that x(¢3) and x1(p3) can be expressed rationally in /3.
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We saw that

208.F (30:7)-F (5357)
80. w18 =B+ Z { 1 +e2c2290+1(22”f12> 215}

Setting ¢ = x, we have an equation in x of degree (2n + 1). A root of this equation

is * = pf; now substituting 3 + 2271]2‘:1 for 3, ¢18 does not change the value. Thus x =

%) (ﬂ + 22nk$1) will be a root whatever the integer k. By now giving k£ the integer values

2kw
2n+1

will be precisely the 2n 4+ 1 roots of the equation in x.
That stated, substituting 5+ 227ka1 for B in the expressions for 1,3 it becomes, in virtue
of (72.):

from —n to +n, ¢ (ﬂ + ) takes 2n + 1 different values. Hence these 2n + 1 quantities

2kw Rl m 2(k+ m)w
w2<ﬁ+2n+1) = 2.0 S0<5+ 2n + 1 )

m=—n

u 2
= Q—kaﬁ_‘_ Z am—s—n—k‘(p <ﬁ+ (;’:{L":—T;)w>

m=1
k
1o 2(m—n—1)w
gmnlk‘
mZ::l S0<ﬂ+ on + 1 >

whence, seeing that ™ tn—F = gm—n=1=k and ¢ <ﬂ + %{Dw) = (ﬁ + 2(;;1::11)w)’

the result is

SL <ﬁ+ ijl)ze—k.wzﬁ.

In the same way we have

2kw \ ik
3 <ﬂ+ 2n+1) = 01" 3.

We see in virtue of these relations that the equations that give the values of of the
functions x () and x1(pB) lead to the two equalities:

o (5+ 2)] = xaten)
2kw

X [so <ﬂ+ 2n+1>} = x(B).
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From which one deduces

R —— 2w
X(eB) = 2n+1-2x[¢<ﬁ+2n+1)},

k=—n

1 il 2kw
xi(eB) = 1 > [90<ﬁ+2n+1>]
k

=—n

Now these values of x(¢f) and x1(pf) are rational functions and symmetric for all of
the roots of equation (80.). So they can be expressed rationally by the coefficients of the
same equation, i.e., rationally in ¢10.

Let

x(#B) = D, x1(¢B) = 2C,
the equations in (79.) give

= [0 + /(€T = D)),

from where, substituting in the value of 19 (:

+n
o, "o VEDEI= 3 0 (34 505T)

m=—-n

From which we conclude, substituting ,, for 6 and designating the values corresponding
to C'and D by C), and D,:

+n
2mw
—k 2n+1 2n+1\] _ m—Fk
0, \/[cuﬂ/(cg—Dﬁ)]_ > o .¢(ﬁ+2n+1).

m=—n

Joining it to the equation

Rl 2mw
L= ¢<ﬂ+2n+1),

m=—-n

we easily deduce that:

2kw
2n+1

2n
p=1
Setting k£ = 0, it becomes:
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84. pf =

T {s016+ +\/ [Cr+/(CE =D )+ + +\/ [Con +1/(C3, —D%Z“)]}.

This equation gives ¢ as an algebraic function of 8. Now previously we found that
@103 is an algebraic function of p(2n+1)B8. So in place of 8 putting 5%+, we have ¢(
as an algebraic function of .

Using a totally similar analysis, we find f(5;57) in fo and F(5,%7) in Fa.
17.

Qno-{‘rl )

The values that we have just found for the quantities ¢13 and g, the first in p(2n+1)43
and the second in 13, each contain a sum of 2n different radicals of degree (2n+ 1). The
result is (2n + 1)%" values for 3,13, . . . ., whereas each of these quantities is the root
of an equation of (2n + 1)th degree. So we can give the expressions for 3 and ¢/ a form
so that the number of values for these quantities is precisely equal to 2n + 1.

That is for

+ 7sin

9 T T
= cos
2n+1 2n+1’

we can make

0, =0,05 =02 05=0% ... 09, =06

The same for

+n .
) = Y 0 <ﬁ+ Zummi )

2n +1
85. p—n .
peot
[9)= 3 0% (5-2=2).
we have in virtue of (74.)
k 2vws kv ik
(54 2ZL) = o)
oy
v <5+2:le> = oMul(B),
1 2vws a1
o (54 o) = ),
1 2vts _ v o1
(G} <5+ 2n+1> = 074 1(B).



Now let

T CNEA)

86. ng%’zﬁ) (1B)k :J:((;ﬂ)’
(¢1ﬁ)k—2n—1 + %ﬁ}(ﬁik’%*l = Q(¥B),

P(pp) and Q(¢f) being rational functions of ¢3; however, by substituting 3 —i—m%ffm

for 3, it is clear in virtue of the formulas that P and ) do not change values; thus we have

Pen= e 2 3 [ (0 )]

—n p=—n

however the right side is a symmetric rational function of the roots of the equation
e(2n+ 1) = 52#:11, so P(¢B) can be expressed rationally in ¢(2n + 1)3. It is the same
for Q(pfB). Knowing these two quantities, the equations in (86.) give

Wh@) [ (eis\ QB
wlﬁ)k{l (55) [ =ren-gism

now

Y1 = Ai+4/(A} - BT,
UiB = A —y/(43 - BP"H)
hence

k
(@Zl(ﬁﬁ))k 24/ (A7 = BI"™) = Q(¢f) — |:A1 —1/ (A} - Bf"“)] P(pp).

So we have

VB = (W'B)". {Fk + Hy.nf (A2 — B%"“)} :

where Fy and Hj, are rational functions of ¢(2n + 1)8. Replacing 4; and B; and
substituting in the values of ¢*3 and (' 3)¥, it becomes:

_k
2"+§/ [Ak +/ (4% - Bgnﬂ)] = [A + V(42 - B%H)} o [Fk + Hp/ (A2 — B2n+1)} ;
therefore the value of (1 becomes:
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87. 18 = p(2n+ )54—2 +1

2
+ [Fz + Hay/ (A2 — BSZH)] [A +/(A2 = an+1)} I+l
2n
ot |:F2n+H2n (A2 _BQn—i—l)} [A—f— (A2 _B2n+1)] 20t }

By a very similar process we find that

{[A—i— (A2_B2n+1)}2”1+1

88. ¢f = 2n11{¢1ﬁ+[0+\/m}2&1
+ e+ Loy/(C2 = D)) [CJF\/W}%%
+ o Ko+ Lony/(C7 = D)) [C+\/m]zﬁil}7

where Ko, Lo, K3, L3 . . . . Koy, Lo, are rational functions of (0.
These expressions for @13 and @B only have 2n + 1 different values that one obtains
by assigning the 2n + 1 values of the radicals. — It follows from our analysis that we can

take /(A% — B?"*1) and /(C? — D?"+1) with whatever sign we please.

18.

The value that we found for ¢(3) or ¢(
following ones:

27) gives, in addition to the function ¢a, the

e, c, 0

SO(Qerul)v (p(%‘ii% f(QZlil))

Fg), i) Flagh),

for arbitrary values of m from 1 to 2n. Now, whatever the value of m, we can al-
ways algebraically express (g7 ), f(gne7)s Flansy) and o(5:257), and o(2:55), f(4n77),
F(3,77) and ¢(5.7 +1) Everything there is known in the expression for ¢( except the

two quantities that are independent of a; ¢(5,%7), #(

2na+1)
). — These quantities depend

wi
2n+1

only on ¢ and e and they can be found by solving an equation of degree (2n + 1)? — 1,
knowing the equation P2”+1 = 0. — We will see in the following section how we can reduce
the solution to that of equatlons of lower degree.
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§. V.
C. On the equation P, = 0.

19.

The expression we just found for (5,%) contains, as we saw, the two constants ¢(5,57)

wi
2n+1

and ¢ ). We found these quantities by solving the equation

Popy1 =0,
for which the roots are represented by
mw -+ poot
x = ],
7\ 2n+1

where m and p can be integers from —n to +n. One of these roots, corresponding to
m =0, u =0, is equal to zero. So Pa, 1 is divisible by x. Ignoring this factor, we have an
equation

R =0, of degree (2n +1)? — 1.

Setting #2 = r, equation (90.) R = 0 in 7, is of degree % =2.n(n+ 1), and the
roots of the equation are

mw —+ oot
91. = [ — =
" ‘p< on + 1 )

1 and m being all the positive values below n, disregarding the zero root.

We will now see how one can reduce the solution of the equation R = 0 to that of of
two equations, one of degree n and the other of degree 2n + 2.

To begin with, I claim that the values of r can all be represented by

mw pw + @i
92. 2 d ¢? —_— ...
v <2n+1> e (m 2n+1) ’

where we give p all the integer values from 0 to 2n, and m those from 1 to n.

Indeed, ? (22”:’1 represents initially n values of r; now the other values can be rep-

pw~+wi
2n+1

between —n and n. Substituting we have

2 (m.uw+wi> _ <l<:.w+ m'w —|—mwi)

resented by (2 (m ) For example, let mu = (2n + 1)k + m’, where m’ is an integer

2n+1 2n+1
o (mut+mwi\ 5 (—mw—mwi
P\ T )7 2n 1 )
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pw—+we
2n+1

thus ? (m ) is a value of r; now each value of m gives a different value of m/.

Since if one has

mip = (2n+ 1)k +m/,
it follows that

(my —m)u=2n+1).(k — k1),
which is impossible, as 2n 4+ 1 is a prime number.

Thus ¢? (m“é‘:z?) combined with ¢? (QTT?J“:I) represent all the values of r.

That stated, let

0 o2 ()] oo (2] e (52)

=" +pn,1.r"_1 +pn,2.r"_2 + -+ p1.7 + po.

The quantities pg, p1, - . . , Pn_1 are symmetric rational functions of ¢? (2n“jr1) , 2 (22‘11) ,

P (223‘;1); now these functions can be found by means of an equation of degree 2n+ 2.

Let p be an arbitrary symmetric rational function of (2 (2511) , 2 (23;1/1) yes P2 (ﬁ“jrll) )

where w’ designates the quantity mw + pwi.
By the formulas that we gave above for expressing ¢(nf) in ¢(f3), it is clear that one

w/

2n+

w/
2n+1

/ / / /
_ 2 w _ 2 w 2 2w 2 w
M. p=vy [‘P <2n+1)]_9[‘ﬁ <2n+1>’¢ <2n+1>""’90 (”2n+1>]’

6 designating a symmetric rational function. Putting vw’ in place of w’ it becomes

v’ v’ 2vw’ nvw'
95. 2 =0 | 2 2 .
w[so <2n+1>] [*0 <2n+1>’*0 <2n+1)’ P \2n+1

Setting

can express ¢? (m’ . ) as a rational function of ¢? ( ) Therefore one can make

av = (2n+1).k, + ka,

where k, is an integer between —n and n, the series

ki, kay ... kn
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has the same terms (up to sign) as the following:

1,2,3,...,n;

So it is clear that the right side of equation (95.) has the same value as p.

Therefore:
Nz B o W
w6 vl (507)] = [ (mer) |

Setting w’ = w and W’ = mw + @i in the equation gives these two:

Nz B 9 W
o7 Ve 2n+1>}_¢[¢ (2n+1)]’
' mw + wi [ 9 mw+wi>}

2 _— =
vl 2n+1 ﬂ s 2n+1

for brevity set

vw mw + wi
98. (pz < > =ry,, gpQ (VQTLH> = Tym,

it becomes

99. r, =Yy ¢r1/,m = ¢r1,m-
That stated, let

100 { (p—vri)(p—vrio)p—vrig)(p—vrig) - (p—Yriom)
=qo+q1.p+ qQ-p2 + -+ qzn+1-p2n+1 + p2n+2-

I claim that one can express the coefficients qg, q1 etc. rationally in e and c.
First, in virtue of the known formulas we can express these coefficients rationally in ¢1,
to, ..., to,, if for brevity we set

101t = (Pr1) + (Pri0)® + (Yria)f + -+ (Proon)k.

Now it remains, therefore, to find the quantities ¢1, ts, .. ., which can easily be found by
means of the relations in (99.). Indeed, successively setting v = 1,2, ..., n, before having
evaluated the two sides the kth power, we conclude at once that:

1
102 (pr1)* = 5[(@“1)’g + (Pro)* 4+ 4 (Yra)"],
: 1
(wrl,m)k = 5[(¢T1,m)k + (¢T2,m)k +t (wrn,m)k]-
So now substituting for m all the numbers 0,1,...,2n, and then substituting in the

expression for ty, we get:

43



ety = (Yr)* 4+ (Yro)* o ()"
+(r1,0)* + (Yra0)* + -+ (Yrno)”
103. +(pr1)* + Wre)F + - 4 (Prnn)”
+ “ e

+(r100)* + (Wroon)f + -+ (Wrnon).

As we will see, this value of ¢ is a symmetric rational function of n(2n + 2) quantities
T13T2s ooy Ty e e T1,0,72,05 -« o5 Tn0s -5 T1.2n572.2n, - - - » 'n.2n, that are the n(2n + 2) roots
of the equation R = 0. Therefore, as one knows, t; can be expressed rationally by the
coefficients of this equation, and consequently by a rational function of e and ¢. Having
thus found the quantities t;, one may deduce the values of qg, q1, . . ., g2n+1; Which will also
be rational functions of e and c.

20.

That stated, supposing that
104 0=qo+qp+qp’+ -+ qup™ " +p*2

one will have an equation of degree 2n + 2, the roots of which are

Y1, Yrie, ¥, Yrie, o, YT on.

We will be able to find the function ry, that is, an arbitrary symmetric rational

function of the roots r1,79,73,...,7,, by means of an equation of degree 2n + 2.

Hence one will have in this manner the coefficients pg, p1, - ..,Pn—1, by solving n equa-
tions, each of degree 2n + 2.

Having determined pg, p1, ..., we will have by solving the equation

105, 0=po+pir+- -t pa-rr™ ",

the value of the quantities

T1,72, -5 Tni T1,0,72,05---5Tn,05 T1,1,72,1,---,Tn,1 €tc. etc.,
w
2n+1
equation R = 0 that is of degree (2n+2).n, is reduced to that of equation of degree (2n+2)

and n.
But we can again simplify the previous procedure. Indeed, having the quantities

the first of which is equal to ¢? < ) So determining this quantity, or solving the

Po, P1,---, we see that it suffices to know an arbitrary one of them, and also that we
can express the others rationally in that one.
Generally p, g are two symmetric rational functions of the quantities 1,72, ...,r,, we

may let, as we saw:
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p=yri; q=0ry,

¥ry and Ory designating two rational functions in r; that have the property: if one
changes 71 arbitrarily into one of the other the quantities ri,79,...,7,, it remains the
same.

Now suppose:

s = (Vr1)F.0r1 + (Yr10)*.0r10 + (Yri)"0r 1 + -+ (Ur120)".0r1 20,

I claim that s; will be able to be expressed rationally in e and c.

Indeed,
1
(Wr1)*ory = (r,)Eom, = = {(wl)k.en F ()R By £t (wrn)k.é?rn} :
1
(Wr1m)" 01 m = (Urym)* Orym = — {er,m)kﬂ?”l,m + (Yrom)* Orom + -+ (Wn,m)k-@?“n,m} '
Setting m = 0,1,2,...,2n, and substituting in the expression of si, we see that si
will be a symmetric rational function in the roots 7o, 71,...,71,0 etc., etc. of the equation
R = 0; therefore s; can be expressed rationally in e and c.
Knowing s, we obtain by setting &k = 0,1,2,...,2n, 2n + 1 equations from which one

easily deduces the value of 0r; as a rational function of ¥7. So given a function of the
form p, we can express another arbitrary function of the same form as a rational function
p. Thus as we claimed, we can express the coefficients pg, p1, ..., pn—1 rationally using one
of them arbitrarily. Therefore in conclusion, to find the values, it suffices to solve a single
equation of degree 2n + 2, and as a consequence, to find the roots of the equation R = 0
it suffices to solve an equation of degree 2n + 2, and 2n + 2 equations of degree n.

21.

2n+1
of degree n can be solved algebraically. The method by which we carried out the solution

is entirely similar to that due to M. Gauss for the solution of the equation

Now among the equations of which depend on the quantities ¢ <277;”T ) ( @i ) those

gt —1=0.
Let the equation

106.  0=pi+p1r+par’+ - +po1r" 0",

be given, of which the roots are:

o f W o [ 20 o [ nw'
P \onx1)% \ons1) Y \onx1 )
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where «' is one of the values w, mw + wi. Designate by a one of the primitive roots
of 2n 4 1, that is to say, a integer such that u = 2n + 1 is the smaller number that makes
at —1 divisible by 2n+1. I claim that the roots of equation (106.) can also be represented
by

107 (), p*(ae), p*(?e), p*(a’e),..., p* (" o),

Where € = m

Let

a™ = 2n+ Dkp, £+ am,

where k is an integer and a,, a positive integer less than n + 1. I claim that the terms
of the series

17a17a27 <oy Q-1

will be all different.
Indeed, if one has

A = ay,
this results in
either o™ —a" = (2n + 1)(ky, — k),
ora™ + ot = (2n+1)(kn, + k).

It is thus necessary that one of the quantities o™ —a*, o +a* be divisible by 2n+1; or
supposing m > u, which is possible, it is necessary that o™~ — 1 or @ * + 1 be divisible
by n; however that is impossible, as m — p is less than n.

Therefore the quantities 1, a1, as,...,a,_1 are distinct and as a consequence coincide
with the numbers 1,2,3,4,...,n, but in a different order, .

Thus noticing that

P {[(2n + Dkm £ amle} = ¢*(ame),

we see that the quantities (107.) are the same as these:

0% (€), ©*(2€),. .., ©%(ne),
that is to say, the roots of the equation (106.) QED.
What’s more, since

o = (2n+ 1)k, — 1,

we will have
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Q"M = (2n 4+ 1)k,a™ — o™,
SO
Gntm = +am
and
¢2(an+m6) — (,02(Oém6).
That stated, let an arbitrary imaginary root 6 of the equation
0" —1=0

and

108, t(e) = % (e) + p*(ae)d + p*(@®e)0? + - + p*(a" )"

In virtue of what we saw previously, the right hand side of this equation can be trans-
formed into a rational function of 2 (e).
Let us set

109.  ¢(e) = x [(,02(6)] .

Putting a™e in place of € in the first expression for ¢ (e), we get:

P(a™e) = p*(a™e) + 2 (™ le).0 + ©? (™ 2e).0% + - -
+(p2(an—l6).6n—m—1 + (p2(an€).6n—m 44 S02(an—ﬁ-m—le)ﬂn—l’

but we saw that ¢?(a™t™e) = ©?(a™e); therefore:

P(a™e) = 0™ 0% (e) + 0L 02 () + 0T 2 (0e) + - - -
+0" L2 (@™ le) + p*(a™e) + 0.0 (T e) - 07T 2 (@ ).

Multiplying by 8™, the right hand side becomes equal to 1 (e), thus:

110.  P(a™e) = 07 ™.ap(e),

or:

U(e) = 0™ x [p*(a™e)]
from which raising both to the nth power, one concludes by virtue of the relation
o =1:
UL (o] = {x [¢*(@"e)]}".
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By successively setting m = 0,1,2,3,...,n—1,n, the formula gives n equations, which,
adding them term by term, give the following:

112, nfp(e)]" = [x [¥*(©)]]" + [x [¢*(ae)]]" + [x [¢*(@®O)]]" + - + [x [¢* (@' O)]]";

Now the right hand side of this equation is a symmetric rational function of p?(¢), ¢?(ce),

.., ©*(a™ Le), that is, the roots of equation (106.); therefore (1)€)" can be expressed by

rational functions of pg, p1,...,pn—1, and consequently by a rational function in any one
of these quantities. Let v be the value v of ¥ (e), then we get

113. v = @?(€) + 0.0%(ae) + 02.0%(a%€) 4+ - + 0" L2 (™ Le).

That established, let # = cos 27” + 7sin 27” The imaginary roots of the equation 8" —
can be represented by

0t,0%, ..., 0" L.
Thus by successively setting 6 equal to each of the roots and designating the corre-
sponding values of v by vy,v9,...,v,_1, we get
Y (6) + 0.0 (ae) + -+ 0" Lp? (@ Le)
2

ae) 0722 (" )

{L/ITQ ©*(e) + 0%
Ym_1 = @2(e) + 0" L% (ae) + -+

By combining these eqautions with the following:

—pn-1 = ¢°(e) + ¢*(ae) + - + > (" e),

we easily conclude:

114. ¢2(am6)=+1{ Pt + 0T 0TI e 4+ 0 g - (0 ”m.m},
and for m = 0:
15, (0= (ot + YT+ YTk YT}
22.

All of the roots of equation (106.) are contained in formula (115.), but since there are
only n of them, it still remains to give ¢?(¢) a form that does not contain roots to the
question. Now this is easily done as follows:
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Let

n/yk
( n/l/l)k
Using here € instead of a™e¢, /v; will become O=Fm v/, and /w7 to 0. /U7, SO Si

becomes:

S =

Hikm.{‘/l/k Yk
E k-
o) (vm)
The function s, as can be seen, does not change value when one uses ¢ instead of
. Now py, is a rational function of ©?(e). Thus, by designating pi by A [@2(6)], we have

Sk = A [gpz(ame)] ,
whatever the integer m. One will conclude in the same way as we have found for (ye€)™,

that the value of s is a rational function of one of the quantities pg, p1,...,pn—1. Knowing
Sk, we get:

o = s (/)

So putting v in place of v, the expression for ¢?(a™e) becomes:

2 n

1 .
116.  ¢*(a™e) = - {_pn,l I T L T Snilg—(n—l)my%} ’

for m = 0:

n—1

2 1 1 2 3 n—1
117, ¢ (e) = - {—pn_l +vn + S9.un + 830 - F SV R }

This value has only n distinct values that correspond to the n values of vn. So ulti-
mately the solution of the equation Ps,11 = 0 is reduced to one equation of degree 2n + 2;
but this equation does not appear in general to be solvable algebraically. Nevertheless one
can solve it completely in particular cases, e.g., when e = ¢, e = ¢/3, e = ¢(2 £ /3), etc.
In the course of this memoir I will deal with these cases, of which the first is especially
remarkable, as much for the simplicity of the solution as for its beautiful applications in
geometry.

Indeed, among other things I arrived at this theorem:

One can divide the whole circumference of the lemniscate into m equal parts
using ruler and compass only if m is of the form 2" or 2" + 1, the latter number
at the same time being prime; or if m is a product of several numbers of the
two forms.
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This theorem is, one sees, is precisely the same as that of M. Guass relative to the
circle.

§. VI
Various expressions for the functions ¢(nf3), f(ng), F(np).

23.

By using the known formulas that give the values of the coefficients of an algebraic
equation as a function of the roots, one can derive various expressions for the functions
o(nB), f(nB), F(nB) from the formulas in the preceding paragraphs.

I will consider the most remarkable.

To shorten the formulas, the following notations will be useful: I will indicate:

k/
1) By Z 1 (m) the sum, and by H 1(m) the product of all the quantities of the form
m= m=k
1(m) that one will obtain by giving m all integer values between k and £, the limits k and
k" included.
k/

v KoV
2) By Z Z (m, p) the sum, and by H H 1 (m, p) the product of all the quantities
m=k p=v m=k p=v

of the form ¢ (m, u) that one obtains by giving m all the integer values from k to k¥, and
to p the values from v to v/, always including the limits.
According to that, it is clear that one will have:

119. Z W(m k) +w(k+ 1)+ + (k)
y
120. ] w(m) = (k) -k +1)-- (K,
m=k

kv v/ v v/
12 > ) p(mp) =) (k) + Y (kA1) 4+ > (),
p=v p=v p=v

m=k u=v

122. HHu)mu Hw(k,u).ﬂ (k+1,p)- H¢

m=k p=v n=v u=v

That said, consider the equations
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P
p(2n +1)5 = 2L
ggnﬂ
123. f2n+1) =2+
P2/7/1+1
F(2n+1)3 = 2n+L
Q2n+1

You will see, that Py, is a rational function of  of degree (2n + 1)? and of the form
z.4p(2?). Similarly, P, ; and Py, are functions of the same form, the first in y, the
second in z. Finally Qs,41 is a function that, expressed indistinctly in z, y, or z, will be
of degree (2n + 1)? — 1, and only contains even powers. So we have

Py = A.x(2"+1)22+ -+ Bax; Py, = A’.y(2”+1)22 +---+ Bly;

)24 — A" ,(2n+1) + B 2 O.p(2n+1)?=1 D:
M+l = /z(2n+1)2 2 Qant1 = /jU i1 —1+ -+ »

Qont1 =Cy -+ D Qont1 =C".2 n+ +---4+ D"

Substituting these values into (123.), we get

AP g B.x} —o(2n+1)p. {C.m(%ﬂ)zfl +--+ D} ,
A/.y(2n+1)2 - B’.y} —f@n+1)8. {C/_y(2n+1)271 N D’} ,
A//.Z(2n+1)2 4ot B”.Z} o F(QTL + 1)5 {C".z(2"+1)2_1 NN D//} ]

In the first of these equations A is the coefficient of the first term, —p(2n+1)3.C that
of the second, and —¢(2n + 1)3.D the last term. So S (2n +1)8 is equal to the sum and

+D 7¢(2n + 1) is equal to the product of the roots of the equations under discussion, an
equatlon that is the same as this one:

P
124, p(2n+1)8 = Q%:ll
mn

Thus while noticing that A, C'and D (and in general all the coefficients) are independent
of 3, one sees that p(2n+1) is (up to a constant coefficient) equal to the sum and product
of all the roots of equation (124.).

In the same manner, one sees that f(2n + 1)5 and F(2n + 1) are respectively equal
to the product or to the sum of the roots of the equations

P//
Q2n+1 T Qoner

by taking care to multiply the result by a suitably chosen constant coefficient.
Now the roots of equation (123.) according to No. 11 are respectively:
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m w .
= (—1)™*H,
z=(-1) ¢<ﬁ+2n+1w+2n+1wz>,

m u .
= (-1)™
y=01 f(6+2n+1w+2n+1m ’
m p

i,

= (“1)hF
2=(=1) <ﬁ+2n+lw+2n—|—1w

where the limits of m and p are —n and n.
Therefore in virtue of what we have just seen, and by using the notations adopted we

will have the following formulas:

( +n  +n .
_ _ymtp m.w + uwi
o9 =a 30 3 (1" 5+ mth=t),

+n +n )
fon+ g =4 3 3 (g (5 M),

m=—npu=-n

+n —+n .
Fen+1)p=4" 3 S (~1rF <ﬁ + W) :

125 memnen
. RAC— mw + pwot
2 1)=18B . _—
e(2n+1)p [T II s0<ﬁ+ ] )

m=—np=-n

, R mw + pwt

m=—npu=-—n

+n +n .
mw + pwt

m=—n pu=-—n

To determine the constant quantities A, A’, A”, B, B’, B”, it will be necessary to give
3 a particular value. Thus taking 8 = % + 54 in the the first three formulas, after having

divided the two sides by ¢/, it will become, noticing that ¢ (% + %z) = %:

s e(2n+1)p3
P
A P
_ F(2n+1)8
A" = B

Given = % + 5i + «, one has:
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¢((2n+1)a+nw+nwi+%+%i) N
v la+5+5i)
e(@n+a+9+%i)  pa
plats+5i)  ¢@2n+la
f(2n+1)a+ nw + nwi + % + Fi)
Fla+5+5)
f(2n+1)a+4%+%
f(a—i— +%
F((2n—|—1)a+ +%)
F((2n+1)a+nw+nwi+%+%i) e
F(a+ %+ %) -

A=

Al =

f(oz—i—%) for « = 0.
f(@n+1)a+y)

— () )y

A// —

F(a+ 51)
F(2n+1a+ Fi)

= (-1

These expressions for A, A’, A” will be of the from 8 by setting o = 0. Thus we will
find according to the known rules:

T o1 EETEEE
According to that the three first formulas will become:

1 A/ _ A// _ (_1)n

+n +n ;
mw + Ut
2 1 m—HL R i
(20 +1)5 = 2n+1§;£;n o (o4,
) A mw —+ poot
. 2 1 = )
126. ¢ f(2n+1)8= 2n+1 m__w;n < i1 )
)" oo mw —+ poot
F(2 1 — .
s = 2n+1£;m§% r (o)

To find the values of the constants B, B’, B”, I notice that we will have:

+n  +n n n
2. [I I ¢(m.w) =v0,0). ] w(m,0). [T (0, )
m=—n pu=-n m=1 pn=1
X H H W(m, p). H H (m, —p) p(—m, ).
m=1 p=1 m=1 pu=1

Applying this transformation to formulas (126.), dividing the first by g, the second
by fB and the third by F3, at the same time making 3 = 0 in the first, 8 = % in the

93



second and § = i in the third, and noticing that (2nt+1)8

P8
W:2n+l,forﬁ:%,andtha‘cF(Qgi'EDﬂIQn+l,forB:%i: we find:
( . mw - Wt
2n+1) =B 2 : 2
(2n+1) I+ (Qn-i-l) 11« <2n+1>
m=1 u:]_
n n . .
o [ MW + pwi 9 [ MW — i
XHH90< on + 1 )"P< o+ 1 )
m=1 p=1
n n .
om+1) =B J[2(2+-2) T2 (2 + 222
(@2n+1) 1__If (2+2n—|—1 Hf 2t ont
128. n " e .
9 (W Mmw + pwt 9 (W Mmw — pwt
X — . —+——.
HHf <2+ 2n+1 >f (2 2n+1 )
m=1 p=1
n n .
m+1) =B" T P2 (Ziv ) T2 (2 22
(@2n+1) 11 <2Z i) (it
m=1 p=1
n n . .
w.  Mmw+ uwt o (. MW — uwi
(= B = _
Xglg <2“r 2n + 1 ) (22+ o+ 1

From these equations one find the values of B, B/, B”, and then substituting these into

the transformed formulas, we get:

o4

=2n+ 1, for 8 = 0, that
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e(2n+1)8 =
noy (5 + 2:71)1) P (ﬁ - ﬂfl) oy (5 + 2’2?1) P (ﬁ - 271?1)
(2n+ 1)pp. H s . H g
m=1 2 <2n+1> =1 P <2n+1>
Xfﬁﬁwﬂ+%ﬂ?%&ﬂﬁ%ﬁﬂw@+%ﬁﬂw0ﬁmMT)
e o (25 o ()
f2n+1)8=
o 117 (04 i) 1 (0~ ) i’ (9-+43) 1 (5 #71)
w mw w Tl
129. m=1 f? <§ + 2n+l> p=1 f? (5 + QI:H—l)
gl Cr ) S0 ) 10 ) 5 (0 )
= (R 72 (5 + )
F@2n+1)p =
s s 1T (0+d) F (0 5%) i (B+45) F @_ £24)
. - T
m=1 2 (%Z + 27;1)1) p=1 2 (%Z - 2l:1+1>
I el ) B (8- ) P (- ) F (8- M)
PR G P2 (i mye)

One can give these formulas a very simple form by making use of the following formulas:

pB+a)pB-a) _  1-50
pra 1— &8 7
¢ (a+5+51i)
L f
[B+a)-fB-a) _ T A
2 (w 23 )
P re) b Cs D)
25
F(f+a)FB-a) _ ey
g s ce: ool

that one can easily verify using formulas (13.), (16.), (18.).
From these formulas, it is clear that one can put equations (129.) into the form:
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([ p(2n+1)8 = ] ]
1— 9B 1——£8
9 1 - ‘92(2:?$1) - 902(2’24&)
(2n + )goﬁ.H.l =T ‘Hl =
G o T N s T )
% ﬁ ﬁ 9"2( 2:f1 ) ‘/’2( St )
S 1 — Coaltl 1 028 0
meipct !~ g ) T gy )
f@n+1)8= . .
L~ oy 1~ el ey
2 1 - f2(m+§) ‘ f2(5+2lfn+1)
130 I o R N =)
n n 1— Lﬂ 1— Lﬁi
<1111 F(g+75 1) FPg+75 )
1 — f28 N f2B 7’
m=1 p=1 fQ(%+%i+m;jf;zl) fg(%+%i+mg;fle)
F@2n+1)p=
F23 F23
n l- —~—+—— n 11— —=—"+—
F2( 2y @ F2(Z iy 10
@n+1)FB. ] " (2;2;”“) 1 . (2;2;"“)
R R Cxaery
O A T S
) = P(E )
1— 25 1 F2p .
molil LT g ) | P g )

These formulas give, as one sees, the values of ¢(2n+1)3, f(2n+1)3 and F(2n+1)4,
expressed respectively as rational functions of 3, fG and F(3, in the form of products.

We will also give the values of f(2n + 1)3, F(2n + 1) in another form that will be
useful in what follows.

We have 23 =1 — c?¢?3. Hence

128 _ c? (@25 - CPQOK) . c? 9 o’a
L= f2a fia - fQOzSO G fia
and
P8 e -¢ (Sita)l
7 (5i+a) Plgita)

now in virtue of (18.) one has:
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therefore:

2 2
L= fng 1 e+ - ZZTQ
_ 28 o 4o e2 1 oadt)
L g d ey
One similarly finds:
2 23
—mh 1 4 1-5
1?8 Fla’ €2 1_ _¢B8
F2(5+a) (5 +a)

In virtue of these formulas, and setting 6 = 0 to determine the constant factor, it is
clear that one can write the expressions of f(2n + 1), F(2n + 1)8, as follows:

2 2
1— i) 1— 0 6
- 9"2(%+2ZT1) < 992(%”21?1)
f(2n+1)5:f5.H1 i 'H1 5
me (e gia) T @5 iaE)
n n 1 2( w Som/g«‘f,uwz 1 - 2(w S01”)’1,?17,11,1:;7,
XHH ""(2"’ 2n+1 ) ‘P(2+ 2n+1 )
1 — %6 1 26
130' L e RIS O = B
n 11— o0 n 1-— b .
02 (2t e 02 (T g B
F@”—FDBZFﬁ.H (2 22n+1) H (2 22n+1)
B 1 B
m=1 P (5+5 i+ 50 p=l ‘92(%+%i+2‘fﬁ)
n n 1= 8 1— ©*B _
P (St "5 ) (5 i+"54T)
S
R O e I (T )

In this section we have considered the functions ¢(nf3), f(nf3), F(nf3) in the case of
odd values of n. One could find analogous expressions for the functions for even values of
n; but since there is no difficulty in that and since the formulas which we arrived at are
those that will be most useful to us later. I will not occupy myself with this [i.e., the even
case].

§. VIL
Development of the functions pa, fa, Fa in series and in infinite products.

24.

In the formulas in the preceding sections, by setting 3 = ﬁ one obtains expressions
of the functions pa, fa, Fa, that because of the indeterminate number n, can be varied
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in infinitely many ways. Among all the formulas that one thus obtains that result from
in the assumption that n is infinite are the most remarkable. In that case the functions
v, f, I disappear from the values of pa, fa, Fa, and one obtains for these functions
algebraic expressions but composed of infinitely many terms. To get these expressions,
put 8 = 52 into formulas (126.), (130.), and then find the limit of the right hand side of
these equatlons for ever-increasing values of n. For brevity, let v be a quantity for which
the limit is zero for ever-increasing values of n. That said, consider successively the three
formulas in (126.).

Making § = in the first of the formulas (126.), and noticing that

o
2n+1

131. Zn: Zn: —900+i 6(m,0) + 6(—m, 0)] —I—Z (0, 1) +60(0, —p1)]
m=1

m=—npu=-—n pn=1

+ 57 ST 100m, ) + 0(—m, —p) + O(m, —p) + 6(—m, )],

m=1 p=1

it is clear that one can put the formula under consideration into the form:

1 « - a+ mw a — mw
132. = . —_—
32 g 2n+1‘p<2n+1> 2n+1Z {<2n+1>+“"<2n+1>}
1 - o+ poot a — pTot
—1)# hlLER i m+u _ _
Fonrt 2 ){‘p<2n+1> <2n+1>} eczz Wln—mn—p)
pn=1 mlul
LS S 0= e ),
ec
m=1 p=1

where we have for brevity,

1 1 1
@ZJ(’ITL, /L) = omn 41 ' a+(m+%)w+(u+%)wi * a*(m+%)w*(ll+%)Wi ’
¥ I+l e n+1
133.
1 1 1
@Dl(m, M) = n+1 oH—(m-i—%)w—(/H—%)wi + a—(m+%)w+(ﬂ+%)Wi
® Int1 e 2nt1

Now notice that
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) A
) 241’

@<a+mW)+¢<a—mw>_2¢(2na+1) (2n+1) (

2n+1 nm+1) 1+ e2¢2 ( ) (

o <0‘+W> to (a_“w@) _% () £ (43) F 2( %) b

2n+1 2n +1 1+6202-<P2(2‘ﬁ1)-902<2n11> S 2n+41

where A,, and B, are finite quantities. The part of equation (132.) up to the — sign,
will take the form:

1 «
. ™A+ B
2n+1“’<2n+1) 2n+12 Z +B);

now the limit of this quantity is evidently zero; therefore, on taking the limit of formula
(132.), we have:

. n n
— _i : _1\ymtu _ _
pa=—— hm.ZZ( )™ Hap(n —m,n — p)
m=1 p=1
Z. n n
~ lim. —1)mtnp — —
S0 S ) ),
m=1 pu=1
or:
n—1n—1
134. _ 1y 1)mtH
Ll 3 31 )
m=0 p=0
i n—1n—1
I H _1\ym+u
+ec hm.ZZ( 1) Ay (my ).
m=0 pu=0

It suffices to consider one of these limits, because we will find the other by changing
the sign of 1.
Let us find the limit of

n—1 n—1

SN (=0 Ep(m, ).

m=0 pu=0

For that, it is necessary to try to put the preceding quantity into the form
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P+v,

where P is independent of n, and v is a quantity that has zero as its limit; because then
the quantity P is precisely the limit under consideration.

25.

Let us initially consider the expression:

n—1
> (=P ap(m, )
p=0
Given
2cy
135, 6(m, ) = a? — (mw + pwi)?’
and setting
136, 4b(m, ) — 0(m,p) = R
N m?lu’ m?:U’ - (2n+1)2 123
one will have:
n—1 n—1 n—1 R
137. —1)H. — —1)~. = 20. - —r .
B Xm0 = 3 ) = 20 3 (1)

Then I say that the right hand side of this equation is a quantity of the form 5.
According to (12.), (13.), we have

L 1 _eB+eg+eB-e 200.feFe
p(B+e)  wB—e¢ @BtrepB—e  ¢*B—p
therefore setting 3 = 5% and € = m‘;;ffm = 2;11 and fe.Fe = fe, one has:

20 (g ) -0 ;—“
P(m, p) = 2n1+1.@2 (<‘2"+)1><p2<2( +i>)

2n+1

Now we have:

o o« N Ao
\ont1) " omr1 Gy

SO:
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2403 2
Hlm = 2 (%> —¢ (6“1)'{(2%1)4 " (2n+1)2}’

and consequently:

1/)(771, N) - 9(7’)’1, N)

¥
2Aa® 0 (2511 )
2

5 i - .
(2n+1) ©? (2nOfH)_‘P (2nil)

Thus the value of R, becomes:

0 (2% 1) Aa? 1
138. R, = s R T - - .
¢ (wm) -~ () U BV () - (i)
2n+1 o\ 2nt1 2n+1) — \2Zntl
That posed, there are two cases to consider, to know whether 2;’_‘H has limit zero or
not.
a) If 547 has limit zero, we have:
4
@2 €u _ ei N Bu.eu
2n + 1 (2n+1)2  (2n+1)*’

2

€u €u €u CHEM
— e (| 1re2p2 ()| =14 R
9(2n+1) \/[ v <2n—|—1>} \/[ tete (2n+1>] T onr 2

9 o a? D.a*
(p = 2 —"_ 47
2n+1 (2n+1) (2n+1)

where B,,, C,,, and D have finite limits; thus in substituting:

1 Cu
€2 + (2n+1)2

‘@2 14 __Dat _ p G
e T etz ~ Puantnz

2 4
a Da

22 2 Dot €2 ’
(1-%) - (1- %) {2 - Bo oty )




now whether ¢, is finite or infinite, it is clear that the quantity always converges towards
a finite quantity for indefinitely increasing values of n. Therefore we have
140. R, =r,+ vy,

where 7, is a finite quantity independent of n.
b) If 5% has finite quantity for a limit, it is clear that in naming this limit 0y, one

2n+1
will have:

0(0,,) 1

141. R, =-——2% 4+ — + vl

e,

That posed, consider the expression Zzzl(—l)“.(zfﬁ)g. We have
= R, 1
142 > (1)~ = 5{Ro—Ri+ Ry — R3 + -+

= (2n+1)2  (2n+1)
o (=) LRy + (=) Rys1 — Ryp1 + Ryyo — Ryqs + -+ (=1)" " LR, 4]}

First suppose that 2;““ has a finite quantity for a limit, whatever the value of y. Then
notice that

Opt1 = Op,
we have
R, — R, 1= V}L — V;1L+1a
S0:
= R 1 B
1 1 _ 11 11, 11 b
Z( ) @n+ 1?7 @n+i)p (Vo —vi+vy—v3+- 4 =1 )+ 2n+ 1)

pu=0

where £ = n or n — 1 according to whether n is even or odd.
The quantity B always has a finite quantity for a limit, namely B = 0 if n is even and
B =R,_1 if n is odd.
Now we know that a sum such as
V- vy — -t vp g — vk — 1Y

can be put into form k.v, v having limit zero. So substituting:
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nz:l(—l)“ R, _ kv+B
‘2n+1)2 (2n+1)2’
n=0
now, k is equal to n or to n — 1, and B is finite, the limit of ké;ﬁa will be zero. Thus:

n—1

R v
143. —1)~. H___ — )
#ZZO( ) 2n+1)2 2n+1

Now suppose that 27?11 has limit zero. The 2511 is also zero at the limit, unless at the
same time %H does not have a finite quantity for a limit. Given in this case v, the integer

immediately smaller than y/n, consider the sum

Ry—Ri+Ry—Rs+---+(=1)""'R,_;.

Supposing that u is one of the numbers 0, 1,..., v, it is clear that (25‘;1) = mg;j’:{m has

zero for a limit; hence, according to what we have seen, R,, will be a finite quantity and as
a consequence

Roy—Ri+Ry— -+ (-1)""'Ry_1 = VR,

where R is also a finite quantity.
Now consider the sum

(=1)"{Ry — Ryq1 + Rysa — -+ (=1)" """ R, _1}.
If ﬁ has for itslimit a quantity different than zero, we have as we will see:

— 1 1.
Ry —Ryt1 =v, — vy

if on the contrary eil has limit zero, we have:

2n
1
R,=v,+ Vs
now, if at the same time p > /n, it is clear, that in virtue of the value of R,
v, =B, —Cy;

now it is clear that B, and C}, both have for limits quantities independent of u. So
naming the limits B and C, we have:

R,=B—-C+vy,,,

and consequently, also in this case,
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R, —Ry1 =V, —Vyy1.

Therefore, as in the case where 2;11 has a limit different that zero for all the values of
1, we show that

(2(7:):)2{}%” Ry 4+ ()" VIR, ) = ﬁ
Now by combining the equations above, one will conclude
nf(_m B 1 opyp V.
(2n+1)2  (2n+1)? 2n+1’

pn=0
v o
NOW 577 has zero for a limit, so

n—1
14

= 2n+1)2 2n+1

Thus this formula always holds, and as a consequence of formula (137.) one deduces:

n—1 n-1
144. MZO(—I)%(WM) - /;)(—1)”-9(”"”’”) = 2nV+ 1

That posed, it remains to put Zz;é(—l)“ﬂ(m, pt) into the form P+ 52+
Now this can be done as follows. We have:

n—1 % %
Z(—l)“@(m, n) = ZQ(m, w) — Z(—l)“Q(m,u) and
145. Ho n=0 p=n

1

Z(—l)“ﬂ(m,,u) = (—1)"{6(m,n) —0(m,n+1)+0(m,n+2) — - --etc.}.
H=n

Now according to a known formula we have:

0(m,n) —0(m,n+1)+0(m,n+2) — -

1 06(m,n) 930(m,n)
= = A B. e
20(m, n)+ on + n te
where A, B, ... are numbers; now
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O(m,n) = 20
7 a?2—[(m+ 3w+ (n+ 3) wi]

29

so substituting:

O(m,n)—0(m,n+1)+--- = « 4Aawin

= +
a? — [(m—i—%)w%— (n—l—%)wz’]2
From there it follows that

a v v
0 .y Nteeoze —— 4 = =7
(m,n) = 8(m,n+1) + w?2.n? * n? 2n+1
Therefore by virtue of equations (145.)

1
n—1 0
1%
—1\~ — —1)~.
pn=0 pn=0
and as a consequence
n—1 0o v
46, S (1) bm ) = 3 (=1 Bmap) + 5
n+1
p=0 pn=0
26.

Having transformed of this way the quantity ZZ;(I)( —1)*, ¢ (m, ), one deduces equation
(146.):

n—1n—1

n—1 n—1
o mets _ _ym _Vm
7.y Y CNMm ) = 3 () em + Y 5
m=0 =0 m=0 m=0
setting
[e.e]
148, om = (—=1)".0(m, p);
n=0
now
nzl Um _Votnitvet-Flpa w0V
m:0.2n+17 2n+1 S 241 2

v having limit zero. Hence equation (147.) gives, by making n infinite:
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n—1 n—1

149.  lim. Z Z )™ (m, p) = Z(—l)mgm.

m=0 u=0 m=0

Similarly, if for brevity we make:

2x
0 =
1(m7 M) 042 _ (mw _ sz-)zv
150. ) oo
Om = Z(—l)“.@l(m, :U‘)a
o
one has:
n—1 n—1 00
151 lim. Y Y (=)™ (m,p) = > (-
m=0 pu=0 m=0

Having found these two quantities that make up the expression of pa, we will have
upon substituting:

1 1 (3
pa=——. > (=1 om + -~ > (=)™, = o > (=1)"™{a}, — om},
m=0 m=0 m=0

or, by giving the values of ¢/, and o,

152 gpa:ii(—l)m i 20 - 20
| e a? —[(m+3)w il - 3

m=0 =0 - (M + 5) wz] «

Now

2 1 1

+
7 [mt Det (s e’ a-(mrDeF (it Dwi at ekt

SO:

2a 2x
= [(m+w—(n+ ) wi]” = [(m+j)w+ (u+3)wi]’
(2p + 1)wwi B (2p+ 1)wi

ot et Dol + (4 D7 o=t ol + (et B

thus the expression of pa becomes a real form:
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o0

1 m - _1)H -
153. 9004—60~T;)(_1) ,;)( 1) .{[a—(m+;)w]2+(ﬂ+%)2w2 [a+(m+%)w]2+(u+%)2w2

that is, we have:

154 pa = 2(60—51+52—53+---+(—1)m5m_.--)

— TG-S Sy (<L), ),
or:

Om = 1 - ’ + > L
155. [O‘—(m+1%)w]2+w72 [a—(m+§)]w]2+% [a—(m+§)w}2+¥
5, = _ L
o+ (m+ Dl +5 Jat (m+3) e+ ot (m+3)w]

2 2
+25;ﬂ

If we start the study of the limit of the function Y7 Z;(l)(—l)m+“.1,b(m, @) by that

of Y71 (=1)™4(m, p) instead of that of Ez;é(—l)“¢(m,u), as we have done, one finds
instead of the formula (153.) the following:

RS = u+1)w 2u+1)w
=N (=Y (=™, B |
o il F i e =R e i e )

m=0

that is:

157 pa = E(6()—361—i-562—763—i---~—I—(—l)”.(2u+1)eu—--~)

(€0 — 36y +Dey — Tes + -+ + (=1)".2u+ 1), — -+,

2188

where

158. 1 1 N 1




27.

Now to find the expression of fa with means of the second formula in (126.). Setting
B =g 7 there and noticing that then the limit of the quantities contained in the first two
lines becomes equal to zero, we have:

NE

159.  fa = lim.(=1)" )

m

(—1)™h(n — m.n — )

Il
N
=
Il
—

NE
NE

+ lim.(—1)" (=D)™ap1(n —m,n — u),

3
I
-
=
I
H

where for brevity we define:

U(n—mn—p) = 5 {f<a+7”'w+mﬂ>+f<m>}

2n+1 2n+1 2n+1
1 o+ mw — puwi o — mw + puwi
wl(”_m’”_“)_mﬂ{f( I+ 1 >+f< on + 1 )}

Now we have:

2fB.fe fe fB

fB—e)+ f(B—e) = 1+62029026-6025 e2c2p2e’ 23 +

62024,06
Given
_ mw + pwi
2n+1 7
we will have:
1 w  w ) (n—m—i—%)w—k(n—u—i—%)wi
e _ww<2 2_€>__7’6W< on + 1 ’
E — v 7 + \/ 62 F(E—g—zi>
e F(e— 72) \/ 62+02) 2 2

2n+1

:_Ci_F.<<n—m+z>w+<n—u+2>m>_

Therefore we have, by substituting and putting m and u respectively instead of n —m
and n —
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( ) 2n+1 2n+1
w m,p) = —. 1 1 .
“ (@n+1) [@2 <2,f;1> — 2 ((mﬂ);};(f“)mﬂ

We get the value of ¥1(m, u) just by changing the sign of .
Now setting

2 ((ilptleetier) p ((riletlpetyer)

@Cm+ 1w+ (2u+ 1)wi
o2 = [(m+ 3w+ (n+ 1) wi]”

O(m, p) =

and

(2m+ 1)w — (2u+ 1)wi
o —[(m+)w— (u+3) @i
and then finding the limit of the function

61 (mv M) =

n—1n—1

oD (=0m(m, p),

m=0 pu=0

in the same manner as before, we find:

n—1n—1 [e'¢) 00
m=0 p=0 pn=0 \m=0

and

n—1n—1 ') 00
i 32 S0 = £ 350 |

m=0 pu=0 pn=0 \m=0

so by substituting in (159.), and giving the values of 6(m, u) and 601 (m, p), we have:

160. fa=
I & (2m + Vw + (2 + 1)wi (2m 4+ 1w — (2u + 1)wi

- (1)m{ — + _ }
2\ (ot Dt (ar Dol = [t Do et Dyl

pn=0m=0

The quantity contained by the brace-brackets can also be put into the form:
2[a— (m+1)w] B 2[a+ (m+1)w]

o= Gt el + 4 D7 ot (et Pl + (it P =

)
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so also

161. fa=

2.2{2(—1)@

2[a— (m+ 1) w]

o - ma e+ (e her

In the same manner one will have:

2u+ 1w

162.  F(a) =
RN e >

ot (m+ D+ i+ D=

28.

= [+ (mt5)w]* + (ut §) =2

Let us come now to formulas (130.). To find the value of the second, after having set
B = 3,47, and supposing n is infinite, we go initially to find the limit of the following

expression:

A Crr=))
mw+tpwi+k

163, +— ﬁ f[ o2 ()
‘ N m=1 p=1 1-— 7902(%“)
ey

where k and [ are two quantities independent of n, m, u.
Taking the logarithm and putting for short:

1— w2(2na+l)

s02('mu.7+;twi+lc)
164, (m, u) = log 2(2’;* 1)
1— P\ ant1

W

2n+1

we have:

165. logt = Z Zd}(m,,u).

m=1 p=1
Initially consider the expression: Zzzl P(m, p). Given

a2

T (mwtpwitk)?
1o
(mw~+pwi+l)?

166.  6(m,u) = log
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we have:

2
1— M 1 o2
Tk _ o
2 (M) (mw T uwi 112

Y(m, p) — 0(m, p) = log

_ a72. ' ‘P2(2n11)
(motpwitk)® 1 — P2 (metamiaT)
2n+1

That posed, I say the right hand side of that equation is, for all values of m and pu, of
the form:

v
m,p) —0(m,p) = ——.
To show that, it is necessary to distinguish two cases, if the limit of %ﬁm is a quantity

different from zero or if it is equal to zero.
a) In the first case under consideration, naming the limit a, one will have:

o (Mw+pwi+k\ o
( o+ 1 =yaty,
o (Mw+pwi+1\ o ,
? < o + 1 =yetv,

9 ! a? 7
(10 = 2 + 27
2n+1 (2n+1) (2n+1)

So:
2
. P <2na+1> _ a? N v
@2 <mw;#—zz+k) N (2n + 1)2<p2a (271 + 1)2’
2
1 ' (Zn%Fl) —1 a2 i v
902 (mw;;lﬁﬂli—l-l) o (2n + 1)2.@2(1 (2n + 1)2 '
Similarly
1 a? _1 a? _1 a? n v
(mw + powi + k)? (2n 4 1)2 {L%;:ﬁi)tk} (2n+1)%a® = (2n+1)%’
a? a? v

=1— .
(mw + pwi +1)? (2n+1)2a? * (2n + 1)2

By substituting these values, the expression of ¢)(m, u) — 6(m, u) takes the form:
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1o v _1__wn __
(m, ) = B(m, 1) = log { — 50 DI S
EERCIESVERE Sl rnye

the quantities v, /, vy, 1] all having limit zero.
We thus have:

log (1 - Y et

o - = etc.
& 2n+12) " @nr12 o
and consequently:

14

Y(m, p) — 0(m, p) = @t

b) If the limit of the quantity m;jf{” ! is equal to zero, one will have:

o (mw+pwit+ k) (mw+ pwi+ k)? (mw + poi + k)*
2n+1 B (2n +1)2 T (2n+1)4

o — = o* + A o +
PA\2n+1) T @n+02 T (2nt 1) ’
SO:

(07

2 4
1 ¥ <2n+1) _q 042+A/.(2HQT)4+"‘

o2 (M) (mw + i + k)2 + A (e

Now if mw + pwot is not indefinitely increasing with n, we have:

2
. 4 <2na+1> . o? N B
2 (mwzgj]rszrk) N (mw+ pwi+ k)2 (2n+1)%’
similarly:
2
) ¥ <2n0f+1> _, a? N C
9 (mw+#wi+l) - (mw + pwi+1)2  (2n+1)%’
¥ 2n+1

so in this case:

1- L
Y(m, p) — 0(m, p) = log {(2 A } ,

T (2n+1)2
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B’ and C’ having finite limits, or:

'QZJ(’ITL, ﬂ) - H(mv ﬂ) = (2nl_‘)_1)2a

the limit of D also being a finite quantity.
If on the contrary the quantity mw + pwi increases indefinitely with n, one has:

1 _ 902(273—1_) A A, a?
elEs) o, ~ A ot
2 - 2° ik
L— (mw-i—iwi-i—k)Q (Zn + 1) 1+ A (%)
1 .
% 1o 7
(mw+pwi+k)?
where the quantities — ﬂlm. % = :ﬁ”k have limit zero; thus the preceding quantity
is of the form:
2
a
1 - "
Tzt

A” having a finite quantity for a limit. By changing k to [ and designating the corre-
sponding value of A” by AY, the value of ¢)(m, u) — 6(m, i) becomes:

L+ 2na21 7 A" a2 (A" — AY v
Y(m, p) — 0(m, p) = log L - 21> + 3
1_|_(27L0¢T)2A/1/ (2n+1) (2n+1)

Now the limit of A” is the same as that of A; now it is clear that this last limit is
independent of k,m, u (indeed, it is equal to the coefficient of a* in the development of
¢%a). Therefore we have:

A" =M +v,
and by changing k to (:
Al =M+,
from where A’ — Al = v — 1/ = v. Hence A” — A/ has limit zero, and as a consequence
we have:
v
-0 =—

Hence we have demonstrated, that while taking
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Amﬂu’
(2n + 1)’
the limit of A,,, will be always be equal to zero as mw + pwi increases indefinitely
with n, and that it will be equal to a finite quantity in the contrary case.

167.  p(m,pu) — 0(m, p) =

29.

That posed, consider the quantity

3

P(m, ).

p=1

By substituting the value of ¢)(m, i), it becomes:

168, 32 () = D 0m. 10+ ey (A
1 p=1 pn=1

n=

Given the greatest integer v less than /n, we can make:

n
Z Am,u = Am,l + Am,Q + -+ Am,u
pn=1

+ Am,l/+1 + Am,l/+2 + -+ Am,n-

Now according to the nature of the quantities A,, ,, the sum contained in the first line
will be equal to v.A,,, and the second equal to A/, (n—v—1), where A, is a finite quantity
and A/, a quantity that has limit zero. Therefore:

Z Am,,u =v.Ap + (n — V)A;n = (2n + 1)Bm7
p=n

where

v n—v—1,

S 241" 2n41 TV

Thus the quantity By, has limit zero, noticing that v is not larger than /n.
n

m

From there, the expression of Z ¥(m, p) changes into:

pn=1
n n B
169. D wb(m,p) =) 0(m.p)+ 5~
s o n —+

74



To get the limit of >°7_; 6(m, p), I write

zz:Om,u:i:: Zﬁmuzgtg

p=n+1

Now one can find the value of 372 | 6(m, i1 + n) as follows.

One has:
S T
F(ptn)wit
O(m,p+n) = log N s “a;“m

T [mw+(ptn)wit]2
1

o0
Zem w4 n).
pn=1

1

= o { [mw + (i + n)wi + 12

1

 mw + (i + n)wi + K]

)

1, 1
_ ia {[mw+(ﬂ+n)wi+l]2_[mw+(u+n)m+k]2

+ etc.
From which one deduces:

2

- « 1 " « 1
;Qmu+n ;ZEQ<£)_2T”L3 ﬁﬂl

where

)

/() = e

n (et i+ Lowi)” (R 4 @it i)

(%) 1 1

1= — — ’
W (e wi b)) (22 it bi)’

However it is known that the limit of Y% u=1T7 ( )1s equal to fo

iie() /m ()0 + v

pn=1
a L,
Z — — 91 )0z + 1y,
—n
and as a consequence on substituting

75

|

x)0z, thus



va? ot

H T
ZQmu+n /9 8:1:—}-— 91(3:)835—#'--—1———1-7(—#--';
n 2n3

O(x) = : 2 ! 2
(m‘”l + wi + a:wz) (%J“k + wi + xwi)

etc.

thus we have

/m 9( )3 1 1
z)0r = — —
0 wi m“‘”rk + i + xwz) (m%ﬂ + i + azwi)

1 N 1
wi m“”rk + wz (m‘”H + wz)
k—

1 1
T oo (m“"H + wi + xwz) (L‘;’fk + wi + :cwi)
1 k-1 1

wi' on (et o) (meth 4o

The limit of this expression for fo x)0x is zero for an arbitrary value of x. Similarly
one finds that the limit of Y 610z is zero. Hence:

Iz 2 4 6
Zemu_i_n — aiy_aiyl_i_aiyu_...
n 2n3 3nd’
pn=1
_ o [ a2l
2n +1 2n2 3nt n 2n +1

so by also making p = oo:

oo

ZQm,u—{—n v ,
2n+1

p=1

from which:
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n o0

Zwm;ﬁ—n Zem,u 2+1 and

pn=1
170. Zw(m,,u, Zﬁm,u C] +1
pn=1

Vp, having limit zero. From there we deduce that

DO wlmap) =D 4> 0mp) o+ 2:11-
m=1

m=1 p=1 m=1 | p=1

By taking the limit of the both sides and noticing that

Zn: v o Vit Vt+ Uy
:12n—|—1 2n+1

I

we have:

171.  lim. Zzwmu Z Z@mu

m=1 p=1

By giving the values of 1)(m, 1) and 6(m, p), and passing from the logarithms to the
numbers, we conclude:

n n 1— @2(27&-1_) o o2
: ‘p2(mu;fﬁl+k) B mw+,uwz+k)2
172. hm”” (o) :” ||
© Y ¢ o
m=1 p=1 1— W m=1 | p=1 (mw+ywz+l)
¥ 2n+1

By an analysis entirely similar to the preceding, but simpler, we likewise find:

¢*(zn51)
n | 1- Wﬁi) a - ﬁ
173. lim . H % H 17 ,
@ _
m=1 1-— % m=1 +1
S02( 2n++1l) y, (mw )
n 1- Lﬁf’) 00 a?
2 LTt &
174, lim. [ v 2(%;1)) H " G
pu=1 11— i jg#k u=1 (uwz—i—l)
i ( nt1 )



30.

Now nothing is easier than to find the values of pa, fa, Fa.
To begin, consider the first formula (130.). We have:

9 9 o [ Mw + pwot 1
e“ccpt | ———— | = -
2n+1 2 (mwtpwi  w @
¥ n+1 2 — 2t
_ 1
s (Gomi ot (s o)
¥ 2n+1

thus:

I s
1— B 2 (mw+;twi)
1 ¥

mwtpwe

noop
H H ‘PZ( 2n+1 ) _ 2n+1
mw-+ucwi
) 2 -902< 2

m=1 14 e*c? 2n+1 > v?p n_ 2
I e sy
n—m+35 Jw+(n—p+3 Jwe
m=1 1 @2< 2l 2 >
2
" 1- %
B “ (pz( 2:-{!1 )
- H H 1— 9025
m=1p=1 wz(w)
2n+1

That established, if we set 8 = %H and suppose that n is infinite, we get, using
formulas (172.), (173.), (174.), and noting that « is the limit of (2n + 1)90( ) and

equal to a/fsic.]:

_a
2n+1

175. gpa:aﬁl{l— &}ﬁ{HJi)z}

2 2
i i 1- —& - 0 - —%
(mw+pwi)? (mw—pwi)?
m=1 | p=1 1= 1 o 1\, 12 p=1 L= 1 o 112
[(m—=3 )wt(n=3)wi] [(m=3)w—(k—3)=i]

The two formulas (130) will give in the same manner, by setting § = 77 and noticing
that f(0) =1, F(0) = 1:
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176.  fa = ﬁ ﬁ . [(m—élu;wm] 1 [(m—é);;—um]
m=1 | u=1 [(m—3)w+(pn—3)wi] [(m—1)w—(u—1)wi]

2

(8] 1_

— 1—

= 0 R U B B et v (D=
11 T e 11411 1 o? o

pn=0

One can also give a real form to the preceding expressions as follows:

= Oé2 i (){2
7ol (14 555) 11 (1- e

p=1 m=1
_ 2 _1)2 2
X
L 2 1 2 2, .2
m=1ﬂ=11+[‘”(:;#)”] 1+[¢Y*(:;$M 1+ ey

_1
m=1 2
2 1y 72 (mfé)zuﬁ
ﬁ ﬁ 1+ [O‘""/(;an;)] 1+ [a (:;wg)w] 1+ (#7%)2w2
X
P LS ey ey g Al [y
e =
180 Fo= 1+ 3
p=1 (/‘ + %) w?
(at+mw) (a—mw) m—l)zw2
1+ 1+ 1+ 2
o

=t =T Do e h)= T [



These transformations easily take place by means of the formula:

() (i) - () () () (- 225)

_(a+a)??+ b (a—a)*+b* ) (a+a)? ) (a —a)? 1
PR iy B G T ) e
(1+%)

31.

In what preceded we arrived at two types of expressions for the functions p«, fa, Fa:
those that give the decomposition of the functions as partial fractions, all in the form of
double infinite series, the others gave the same functions decomposed into a number of
infinite factors, each one in its turn composed of infinitely many factors.

Now we can greatly simplify the proceeding formulas by means of exponential and
circular functions. This is what we will see by what follows:

First consider equations (178.), (179.), (180.). In virtue of known formulas, we have:

siny y? - y?
= 1-— >; cosy = <1—>;
y ul_[l < 11272 H (,u ~ )2 -2

p=1
So:

H (272 _ sinz H (u=%)72 }  cosz
- 2 zcosy L1114 y? cosy’
p=111— (= k=1

2

In virtue of these formulas it is clear that the expressions of pa, fa, Fa can be put
into the form:

sin (a%i) > o?
— 11 (1 — m2w2>

w
o=
m=1
y 10—01 sin(a + mw) Zi. sin(o — mw) Zi. cos® (m — 3) wZi ‘ (mw%i)Q
o\ cos [+ (m — %) w| Zi.cos [ — (m — %) w| Zi.sin? mwZi (o + mw) (o — mw).g—iﬂ ’
fa= 1-—
m=1 (m o %)2"‘}2
0 _1\2 2
X H <tan |:Oé—|— <m - 1) w] —1. tan [a - (m - 1) w} 1i.co‘c2 <m )wwz (m 2) w2
- 2 w 2 w 2 W a2 — (m 1
m=1 2



cos(a + mw) Zi. cos(a — mw)

%i. cos? (m — %) wgi

Fa=cos(aZi). I] <cos o+ (m —

m=1

One will find the real expressions by substituting exponential functions for the circular

functions in the expressions.

1

%) w] Zi.cos [a — (m — 5) w] Zi. cos? mw. =

We have:
sin(a — b).sin(a 4 b) = sin? a — sin® b,
cos(a + b). cos(a — b) = cos? a — sin® b,
S0:
sin(a + mw) Zi.sin( —mw) Zi {1 B sin? X }
. 9 T - - ) T (>
sin® mw Zi sin® mw Zi
cos [a+ (m— 1) w] Ti.cos [a— (m— 3) w] i sin? aZi

cos? (m — %) wri

o (m-3)4) &

tan ([a+ [ m — = | w| —t.tan
2 w

2

aZi
k7wl

sin
sin? (m—%)w—’r i
W
2alg
vl

cos? (mfl)wli
2 w

sin

From this and noticing that

()

m2w? 1 q
= — an
o — m2w2 1 %2 ,
mew
2
(m — %) w? 1
2 - 2 ’
a2—(m—% w? - —%5—
(m 2)‘”
it is clear that we have:
o 1 sinzagi
7 sin (%m) sin® mw X4
181. pa = —71_[ ———)
(o} 7 1 sSin awz
m= 6052( —%)wgi
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2

1 sin agi
o o et
N 2( l) B
sin“(m+3 Jw—1
182. fo = []. 2w
f 1 sinzagi ’
m=0 c0s2(m+%)w%i
. 1 sin? %ﬂ'i
o . T cosZmEmi
183. Fa = cos(—m).n. o
o sin® 2 i

m=1 COSQ(mfé)%ﬂ'i
Substituting for the cosines and sines of imaginary arcs their values in exponential
quantitites, the formulas become:

1 0o 1_< hET hTET )2
184 (pa = 7.2 (h%ﬂ- _ 7%#) . H hm Tr_h m_=T .
2T . o
m=1 1+< 1hw —h™ = . )
h(mji)%ﬂ'_l_h* m*j)wﬂ'
o a 2
~ 11— < hw™—h" =" >
'”H’l %W - 'm+1 %ﬂ'
185 fo = [[. p(mr8) 2y —(nrd) y
( hg a >

]. [e] [e]
186. Fa = 5 (eE” +e*é”). H

where h is the number 2.1718218....7

We can also transform this formula in the following manner.

If one replaces « by «i, we will have the values of p(ai), f(«i), F(ai). By now changing
c to e and e to ¢, the quantities:

w; @; @(ai); flai); F(ai)

will resepectivley change to:

w; w; ipa; Fa; fa,

so the preceding formulas give:

"There is a typo here. The number we now call e is equal to 2.71828128.. . ..
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4sin2(c’;—")

1+
woLar (hm&m—h—imfﬂf
187. ¢pa = —.sin—. . — ,
i T (52)
m=1 1 — (2m—1)wm (2m—1)wn \ 2
(h 2w +h™ 2w )
1+ 4Sin2(%)

(2m+1l)wm 2m+1)wm 2
(h 2w —h™ 2w )

[e.e]
188. Fo = ][] T ()
m=0

(2m+1l)wm (2m+1l)wm 2
(h 2w +h™ 2w )

4sin2(%)
mwm _mwmr \ 2
()

4sin2(M)

1—

189. fa = cos (%>

m=1 1 - ( 2m+1)wn :L)(Qm-ﬁ—l)ww 2
h 2w +h 2w )
32.
Now consider formulas (160.), (161.), (162.).
We have:
= 2u + 1 2
S CES LU
p=0 y* + (n+3)" T
so setting:
1
Yy = [ai <m+)w] r.
2 w
Z(—l i (QM +21)w 5 - 2£ . 1 ! '
=0 [at(m+Hw] + (p+3)'=w? @ plot(mtz)e]Z | p-lat(mts)e] 2

In virtue of this formula it is easy to see that expressions (153.), (162.) of ¢« and Fa
become:

190.  pa =
2 T = 1 1

e 27" e LR e



2T — 1 !
Pt Z:(){h[a(m+§)w]; I A e s P R Y s RS eS SR ARy W J

The preceding expression of pa, Fa can also be put in many other forms: I will recall
the most remarkable. Joining initially the terms of the right side, one finds:

> hE %) (pm+2) 5 - (men) %

192. pa = 63 % mzzo . (h%ﬂ +h2§")£h<2m+l) — (2m+1)“;r> 7
oo e (m ) ( 1)4

193. Fa = %% 3 <h2aﬂ+h 20) (W= 40 )

= | h = s 4 AETDT @)

If for brevity one supposes:

194. h= =eand h'= = 2,
these formulas, by developing the right hand side, become:

195.  pa =

2 71'(6_1> { r—1 -5 + r—% _}
ec w €) |rP+e+5+ % r6+e2+ +%5 ro+e+L+ g

196. Fo =

27 <€+1> { rt 1 . r3 4k . o+ L _}
c'w e) \rr+e+5+%5 fre+5+5 r0te+ L+ L '

Putting ai instead of « in formulas (192.), (193.), changing also ¢ to e and e to ¢, and
noticing that the quantities

w, @, o(ai), F(ai), h%% — h™¥%, h¥% + h¥'=,

respectively change to:

. . ..m T
w, w, ip(a), fa, 2i.sina—, 2cosa—,
w w

they become:
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PRI Sin%(}l(m%)?_h—(m%)%)
97, pa = ec'w'mz::()(_l)m h(QmH)%+20052ag+h7(2m+1)% ’
pw oo [ cosom (DT L))
198. fa = E‘E'Z'

REmMIDEE 4 2 cos 20k + p~GmHADTE
Putting for short

T

199. h2o = p,

and expanding, we obtain:

200. ¢ (a%) -

4 (7?) Q_% 93_?13 n Q5_£
—.—.sin (a—=). —

ec w 2 0% + 2 cos(am) + ?12 0% + 2 cos(am) + % 0'0 + 2 cos(am) + ﬁ
201. f (ag) -

47 T o+ % o° + Q% 0° + Q%
f—.cos(a—) 3 Tt T T 10 — + -
ew 2 0% +2cos(am) + 5 % +2cos(am) + 55 0" +2cos(am) + ;1o

Substituting into formulas (190.), (191.) the values of € and r in place of h®= and hz=,
it becomes:

2 T oo 1 1
202. po = %; Z(_m) {G.T_(2m+1) + 1 p2m+1 a e.r2m+l e—1 p—(2m+1) } )

203. Fa =

T i 1 . 1
‘w er—2m=1 4 =1 p2m+1l * ¢ p2m41l 4 =1 p=2m—1 [~
m

[e=]

Suppose now that o < %, we have:

1 e tpmml o9m-1 _ 3 .—6m-3 , 5 .—10m—5
° —ZMm— —om— — m—
= ——5——F——5 = €Er —€r +er -
er—2m—1 | c—1,2m+1 1+ €2 p—Am—2 J
—1,.—2m—1
1 _ € .r — ¢l pm2mel =3, —6m=3 5 ~10m—5 _
E.T2m+1 + 671‘,,.7271’171 1 + 672.r74m72

thus:
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2 [oe)
pa = =T { Z(—l)m {e—e N2l — (& — ) 03 4 (& — e ) 1070 — . }}
ec w | A=
T oo o
-2z {<e Y I (), S (- } .
ecw m=0 m=0
Now:
> Pl r
—1)™. —2m—-1 _ -1_ ,.-3 ) — —
ZZ:O( )" r T+ 122 231
o) -3 3
_1ymp3m=3 _ =3 _ .6 -9 _ T __r
mzz:o( )" " ror 1476 641
etc., hence:
904 2 7 e—e 1L €3 —e3 € —e P
. o= —.—. — — e
14 ecw |r+r ! 3493 pd4ppd
In the same manner we find:
905 Fa*gl 6—|—61_63—|—6_3 65—|—6_5_“.
' Ccew \r=r"1 B _p=3  p5_ 5 '

By putting a %4 in place of «, and also changing e to ¢ and ¢ to e,

€ W, ¢ (a%i); F (a%i); r; et 4e et —e ™

become:

w; w; P (a%) i f (a%) ;0; 2cos (ma%) ; 2isin (ma%) .
thus:

4 sin (aZ sin (3aZ sin (baZ
206. gp(ag) _ 7 ( 12> _sin 12) L sin{ 12)
2 ec w o+ 03+ & o+ L
4 o 0
4 cos (aZ cos (3aZ cos (baZ
207. f@f) _ A Jeos( 12) _ 3( 12) 5( 12)
2 e w 07 o~ 0’ — %

These last four formulas offer very simple expressions for pa, fa, Fa. By differentiating

and integrating one can deduce a host of others more or less remarkable.

86



32.

In the case e = ¢, the preceding formulas take very simple forms because of the relation
w = w that takes place in this case. For simplicity, set e = ¢ = 1. We have:

™

’]":h%:hf, Q:h%:h%7

so by substituting and putting o = % into (204.), (205.), we get:

A A e e T e
w s — — —
a¥) =2.% -
4‘0( 2) w hZ4+h™ % WE 4nF WE i F ’
e A e I B T o
F(a%) =27 — -
( 2) “ hZ—h"2 W F + WE % ’
us
w) _ 4m ™ h2 T R3% T K%
¢ (a%) = 4= {sin (a3) .14 — sin (303) .45 + sin (505) 5 +h b
s us
w) _ 4m s h2 s r32 T hE .
flag) =73 {COS (a3) ey —cos (3a3) pawmy +sin (50F) 4575 }

The functions ¢, f, F' are determined by the equations

z ox w

asy = Jy Ja—ah 2 fo\/ﬁ
r=p(ag) = V=3 = [ (a8) = I+ ) = F (a3).

If in the two last equations one sets @ = 0, and if one notices that then the value of

s
51n(mo¢ 3 )

g.o(oz%) is — % and that of W = m, one will find:

2

w_m [ K3 wT o hE _/139«“
2 2| h"—1 hK3T—1 ROT—1 o VA =ab)

us 3m 5m 2
w72:,n_2‘ h> -3 h> +5 h> I /lax .
2 h™+1 A 41 RSt 41 0o V(1 =2

(Continued in the next issue.)
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