
Studies on Elliptic Functions

(By N. H. Abel)

Translated from the French∗ by Marcus Emmanuel Barnes

The logarithmic function, the exponential and circular functions were for a long time
the only transcendental functions which attracted the attention of geometers. Only recently
have others been considered. Among these, we must distinguish certain functions named
elliptic, as they have nice analytical properties for application in diverse branches of math-
ematics. The idea for these functions was given by the immortal Euler, who demonstrated
that the separable equation

∂x√
α+ βx+ γx2 + δx3 + εx4

+
∂y√

α+ βy + γy2 + δy3 + εy4
= 0

has an algebraic integral. 1 After Euler, Lagrange added something, by giving his ele-
gant theory of the transformation of the integral

∫
R.∂x√

[(1−p2x2)(1−q2x2)]
, where R is a rational

function in x. But the first, and if I am not mistaken, the only one who deepened the nature
of these functions, was M. Legendre, who, first in his memoir on elliptic functions2, and
then in his excellent mathematical exercises, developed a number of elegant properties of
these functions and showed their application. At the time of the publication of this work,
nothing has been added to M. Legendre’s theory. I believe that one will see with pleasure
here the subsequent study of these functions.

In general, by the term elliptic function we understand any function included in the
integral ∫

R∂x√
(α+ βx+ γx2 + δx3 + εx4)

,

∗N. H. Abel, Recherches sur les fonctions elliptiques, Journal fr die reine und angewandte Mathematik,
Vol. 2, 1827. pp. 101-181.

1Presumably, Abel is referring to “Integratio aequationis dx/
p

(A + Bx + Cx2 + Dx3 + Ex4) =

dy/
p

(A + By + Cy2 + Dy3 + Ey4) which was originally published in Novi Commentarii academiae scein-
tiarum Petropolitanea 12, 1768, pp.3-16; the paper has been republished in Euler’s Opera Omnia: Series 1,
Vol. 20, pp. 302-317.

2Here Abel is presumably referring to Legendre’s Exercises de calcul intégral, 1811.
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where R is a rational function and α, β, γ, δ, ε are real constants. M. Legendre
demonstrated that with appropriate substitutions one can always reduce this integral to
the form ∫

P∂y√
(a+ by2 + cy4)

,

where P is a rational function in y2. With appropriate reductions this integral can
always be brought to the form∫

A+By2

C +Dy2
· ∂y√

(a+ by2 + cy4)
,

and this to: ∫
A+B sin2 θ

C +D sin2 θ
· ∂θ√

(1− c2 sin2 θ)
,

where c is real and less than one.
It follows that all elliptic functions can be reduced to one of three forms:

∫
∂θ√

(1− c2 sin2 θ)
;
∫
∂θ

√
(1− c2 sin2 θ);

∫
∂θ

(1 + n sin2 θ)
√

(1− c2 sin2 θ)
,

which M. Legendre named elliptic functions of the first, second, and third kind. It
was these three functions which M. Legendre considered above all, the first which is the
simplest and has the most remarkable properties.

I propose in this memoir to consider the inverse functions, that is, the function ϕα,
determined by the equations

α =
∫

∂θ√
1− c2 sin2 θ

and

sin θ = ϕ(α) = x.

The last equation gives

∂θ.

√
(1− sin2 θ) = ∂.ϕα = ∂x,

so

α =
∫

∂x√
[(1− x2)(1− c2x2)]

.
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M. Legendre assumes c2 was positive, but I noticed that the previous formulas are
simpler if we assume c2 to be negative, = −e2. Similarly, I write for more symmetry
1− c2x2 in place of 1− x2. Thus the function ϕα = x will be given by the equation

α =
∫

∂x√
[(1− c2x2)(1 + e2x2)

,

or

ϕ′α = ∂α
√

[(1− c2ϕ2α)(1 + e2ϕ2α)].

For short, I introduce two other functions of α, namely:

fα =
√

(1− c2ϕ2α); Fα =
√

(1 + e2ϕ2α).

Several properties of these functions allow one to immediately deduce well known prop-
erties of the elliptic function of the first kind, but the others are more hidden. For example,
one can show that the equations ϕα = 0, fα = 0, Fα = 0 have a infinite number of roots,
all of which one can find. One of the remarkable properties is that one can express ϕ(mα).
f(mα), F (mα) (m being a whole number) as rational in ϕα, fα,Fα. Also it is not hard
to find ϕ(mα), f(mα), F (mα) when ϕα, fα, Fα are known; but the inverse problem, to
determine ϕα, fα, Fα in ϕ(mα), f(mα), F (mα) is very difficult because it depends on an
equation of higher degree (namely of degree m2).

The solution of this equation is the principle object of this memoir. First we will show
how to find all the roots using the functions ϕ, f , F . Later we will treat the algebraic
solution of the equation in question and reach a remarkable result, that ϕ( αm); f( αm);
F ( αm) may be expressed in ϕα, fα, Fα by means of one function, which in relation to
α, contains no irrationalities other than radicals. This produces a class of very general
equations which can be solved algebraically. We remark that the expressions for the roots
contain constant quantities which in general are not expressible as algebraic quantities.
These constant quantities depend on an equation of degree m2 − 1. We will show how, by
means of algebraic functions, one can reduce its solution to the solution of an equation of
degree m + 1. We will give several expressions for the functions ϕ(2n + 1)α, f(2n + 1)α,
F (2n + 1)α as functions of ϕα, fα, Fα. We will subsequently deduce the values of ϕα,
fα, Fα as functions of α. We will demonstrate that these functions can be decomposed
into infinitely many factors and even into infinitely many partial fractions.

§. I.
Fundamental Properties of ϕα; fα; Fα.

1.

Suppose that ϕα = x (1.), we have by the preceding:
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2. α =
∫ x

0

∂x√
[(1− c2x2)(1 + e2x2)]

.

From that one sees that α, considered as a function of x, is positive from x = 0, to
x = 1

c . If we let

3.
ω

2
=
∫ 1

c

0

∂x√
[(1− c2x2)(1 + e2x2)]

,

it is clear that ϕα is positive and is increasing from α = 0 to α = ω
2 . One will have

4. ϕ(0) = 0, ϕ
(ω

2

)
=

1
c
.

Because α changes sign when one writes −x in place of x, the same holds for the
function ϕα in relation to α, and as a consequence we have

5. ϕ(−α) = −ϕ(α).

Putting xi in (1.) instead of x (where for short, i represents the imaginary quantity√
−1) and designating the value of α as βi, it becomes

6. xi = ϕ(βi) and β =
∫ x

0

∂x√
[(1 + c2x2)(1− e2x2)]

.

where β is real and positive from x = 0 to x = 1
e . Thus if we let

7.
$

2
=
∫ 1

e

0

∂x√
[(1− e2x2)(1 + c2x2)]

,

x will be positive from β = 0 to β = $
2 ; that is, the function 1

iϕ(βi) is positive between
these same limits. Given β = α and y = ϕ(αi)

i , one has

α =
∫ y

0

∂y√
[(1− e2y2)(1 + c2y2)]

.

Thus one sees, supposing c instead of e and e instead of c,

ϕ(αi)
i

changes to ϕα.

And since
fα =

√
(1− c2ϕ2α),

Fα =
√

1 + e2ϕ2α),
we see that changing c to e and e to c, f(αi) and F (αi) turn respectively into Fα and

fα. Finally, the equations (2.) and (7.) show, that by the same transformation ω and $
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turn respectively into $ and ω. According to (7.) one will have x = 1
e for β = $

2 , thus in
virtue of the equation xi = ϕ(βi) we have

8. ϕ

(
$i

2

)
= i.

1
e
.

2.

In virtue of the above, we have the values of ϕα for all real values of α between −ω
2 and

+ω
2 , and for all imaginary values of the from βi for this value, if β is a quantity contained

in the limits −$
2 and +$

2 . Now we will find the value of these functions for an arbitrary
real or imaginary value of the variable. To that end, we initially establish the fundamental
properties of the functions ϕ, f and F . Because

f2α = 1− c2ϕ2α,

F 2α = 1 + e2ϕ2α,

by differentiating we have:

fα.f ′α = −c2ϕα.ϕ′α,
Fα.F ′α = e2ϕαϕ′α,

Now, according to (2.) we have

ϕ′α =
√

[(1− c2ϕ2α)(1 + e2ϕ2α)] = fα.Fα.

Thus by substituting this value of ϕ′ into the two preceding equations, we find that the
functions ϕα, fα, Fα are related by the equations

9.


ϕ′α = fα.Fα,
f ′α = −c2ϕα.Fα,
F ′α = e2ϕα.fα.

That established, denote two indeterminates by α and β. We have

10.


ϕ(α+ β) =

ϕα.fβ.Fβ + ϕβ.fα.Fα

1 + e2c2.ϕ2α.ϕ2β
,

f(α+ β) =
fα.fβ − c2.ϕα.ϕβ.Fα.Fβ

1 + e2c2ϕ2α.ϕ2β
,

F (α+ β) =
Fα.Fβ + e2.ϕα.ϕβ.fα.fβ

1 + e2c2ϕ2α.ϕ2β
.
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These formulas can be deduced at once from the known properties of elliptic functions
∗)3; but one can also verify them easily in the following manner.

Letting r be the right side of the first equation in (10.), we have by differentiating with
respect to α:

(
∂r

∂α

)
=
{ϕ′α.fβ.Fβ + ϕβ.Fα.f ′α+ ϕβ.fα.F ′α}

1 + e2c2ϕ2α.ϕ2β

− (ϕα.fα.Fβ + ϕβ.fα.Fα).2e2c2ϕα.ϕ2β.ϕ′α

(1 + e2c2ϕ2α.ϕ2β)2
.

Substituting the values given in equations (9.) for ϕ′α, f ′α, F ′α, it becomes

(
∂r

∂α

)
=

fα.Fα.fβ.Fβ

1 + e2c2ϕ2α.ϕ2β
− 2e2c2ϕ2α.ϕ2β.fα.fβ.Fα.Fβ

(1 + e2c2ϕ2αϕ2β)2

+
ϕα.ϕβ.{1 + e2c2ϕ2αϕ2β}{−c2F 2α+ e2f2α} − 2e2c2ϕαϕβ.ϕ2β.f2α.F 2α

(1 + e2c2ϕ2αϕ2β)2
,

Whence, substituting for f2α and F 2α their values: 1−c2ϕ2α, 1+e2ϕ2α and simplifying,
one concludes

(
∂r

∂α

)
=

(1− e2c2ϕ2α.ϕ2β){(e2 − c2)− ϕα.ϕβ + fα.fβ.Fα.Fβ} − 2e2c2ϕαϕβ(ϕ2α+ ϕ2β)
(1 + e2c2ϕ2α.ϕ2β)2

.

Now α and β enter symmetrically into the expression for r; thus one will have the value
of
(
∂r
∂β

)
by permuting α and β in the expression for

(
∂r
∂α

)
. However, since the expression

for
(
∂r
∂α

)
does not change value, we thus have

(
∂r
∂α

)
=
(
∂r
∂β

)
.

This partial differential equation shows r is a function of α+ β; thus

r = ψ(α+ β).4

The form of the function ψ is found by giving β a particular value. Suppose, for
example, that β = 0 with the condition that ϕ(0) = 0, f(0) = 1, F (0) = 1. The two values
of r will become

r = ϕ(α) and r = ψ(α).
3∗) Legendre Exercices de calcul intégral.
4Abel himself proved this in ”Untersuchung der Functionen zweier unabhängig veränderlicher Größen

x und y, wie f(x, y), welche die Eigenschaft haben, daß f(z, f(x, y)) eine symmetrische Function von z, x
und y ist,” Journal Fúr die reine und angewandte Mathematik, 1(1), 11-15.
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Thus

ψ(α) = ϕ(α),

and hence,

r = ψ(α+ β) = ϕ(α+ β).

The first of the formulas in (10.) thus indeed takes place.
In the same manner, we verify the other two formulas.

3.

From the formulas in (10.) we can deduce many others. I will show some of the most
remarkable: For short, I let

11. 1 + e2c2ϕ2α.ϕ2β = R.

By first changing the sign of β, we obtain

12.



ϕ(α+ β) + ϕ(α− β) =
2ϕα.fβ.Fβ

R
,

ϕ(α+ β)− ϕ(α− β) =
2ϕβ.fα.Fα

R
,

f(α+ β) + f(α− β) =
2fα.fβ
R

,

f(α+ β)− f(α− β) =
−2c2.ϕα.ϕβ.Fα.Fβ

R
,

F (α+ β) + F (α− β) =
2Fα.Fβ

R
,

F (α+ β)− F (α− β) =
2e2.ϕα.ϕβ.fα.fα

R
.

.

By taking the product of ϕ(α+ β) and ϕ(α− β), we find that

ϕ(α+ β).ϕ(α− β) =
ϕα.fβ.Fβ + ϕβ.fα.Fα

R
· ϕα.fβ.Fβ − ϕβ.fα.Fα

R

=
ϕ2α.f2β.F 2β − ϕ2β.f2α.F 2α

R2
,

or by substituting the values of f2β, F 2β, f2α, F 2α in ϕβ and ϕα:

ϕ(α+ β).ϕ(α− β) =
ϕ2α− ϕ2β − e2c2ϕ2α.ϕ4β + e2c2ϕ2β.ϕ4α

R2

=
(ϕ2α− ϕ2β)(1 + e2c2ϕ2α.ϕ2β)

R2
;
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now R = 1 + e2c2ϕ2α.ϕ2β, thus

13. ϕ(α+ β).ϕ(α− β) =
ϕ2α− ϕ2β

R
.

Similarly one finds

14.



f(α+ β).f(α− β) =
f2α− c2ϕ2β.F 2α

R
=
f2β − c2ϕ2α.F 2β

R

=
1− c2ϕ2α− c2ϕ2β − c2e2ϕ2α.ϕ2β

R
=
f2α.f2β − c2(c2 + e2)ϕ2α.ϕ2β

R
,

F (α+ β).F (α− β) =
F 2α+ e2ϕ2β.f2α

R
=
F 2β + e2ϕ2α.f2β

R

=
1 + e2ϕ2α+ e2ϕ2β − e2c2ϕ2α.ϕ2β

R
=
F 2α.F 2β − e2(c2 + e2)ϕ2α.ϕ2β

R
.

4.

Letting β = ±ω
2 , β = ±$

2 i and noticing that f(±$
2 ) = 0, F (±$

2 i) = 0 we get

15.



ϕ(α± ω

2
) = ±ϕω

2
.
fα

Fα
; f(α± ω

2
) = ∓

F ω
2

ϕω2
.
ϕα

Fα
;

F (α± ω
2 ) = F ω

2
Fα ;

ϕ(α± $

2
i) = ±ϕ$2 i.

Fα
fα ; F (α± $

2 i) = ∓ f $
2
i

ϕ$
2
i .
ϕα
fα ;

f(α± $

2
i) =

f $2 i

fα
;

or:

16.



ϕ(α± ω

2
) = ±1

c

fα

Fα
; f(α± ω

2
) = ∓

√
(e2 + c2).

ϕα

Fα
;

F (α± ω

2
) =

√
(e2 + c2)
c

.
1
Fα

;

ϕ(α± $

2
i) = ± i

e
.
Fα

fα
; F (α± $

2
i) = ±i

√
(e2 + c2).

ϕα

fα
;

f(α± $

2
i) =

√
(e2 + c2)
e

.
1
fα

.

From which one concludes at once:

17.



ϕ(
ω

2
+ α) = ϕ(

ω

2
− α); f(

ω

2
+ α) = −f(

ω

2
− α);

F (
ω

2
+ α) = F (

ω

2
− α);

ϕ(
$

2
i+ α) = ϕ($2 i− α); F ($2 i+ α) = −F ($2 i− α);

f(
$

2
i+ α) = f(

$

2
i− α);
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18. ϕ
(
α± ω

2

)
.ϕ
(
α+

$

2
i
)

= ± i

ce
; F

(
α± ω

2

)
.Fα =

b

c
; f
(
α± $

2
i
)
.fα =

b

e
.

Letting α = ω
2 and $

2 i, we find that

ϕ
(ω

2
+
$

2
i
)

=
1
0
, f

(ω
2

+
$

2
i
)

=
1
0
, F
(ω

2
+
$

2
i
)

=
1
0
.

Replacing α with α+ ω
2 in the first three equations in (17.) and replacing α with α+ $

2 i
in the last three, gives the following

19.
{
ϕ(α+ ω) = −ϕα; f(α+ ω) = −fα; F (α+ ω) = Fα;
ϕ(α+$i) = −ϕα; f(α+$i) = fα; F (α+$i) = −Fα;

and by replacing α with α+ ω and α+$i:

20.


ϕ(2ω + α) = ϕα; ϕ(2$i+ α) = ϕα; ϕ(ω +$i+ α) = ϕα;
f(2ω + α) = fα; f($i+ α) = fα;
F (ω + α) = Fα; F (2$i+ α) = Fα.

These equations show that the functions ϕα, fα, Fα are periodic functions. We deduce
without trouble that when m and n are two positive or negative whole numbers:

21.


ϕ((m+ n)ω + (m− n)$i+ α) = ϕα; ϕ((m+ n)ω + (m− n+ 1)$i+ α) = −ϕα;
f(2mω + n$i+ α) = fα; f((2m+ 1)ω + n$i+ α) = −fα;
F (mω + 2n$i+ α) = +Fα; F (mω + (2n+ 1)$i+ α) = −Fα.

These formulas may also be written as:

22.


ϕ(mω + n$i± α) = ±(−1)m+n.ϕα,
f(mω + n$i± α) = (−1)m.fα,
F (mω + n$i± α) = [(−1)n].Fα.

5

We make note of these particular cases:

22.′


ϕ(mω ± α) = ±(−1)m.ϕα; ϕ(n$i± α) = ±(−1)n.ϕα;
f(mω ± α) = (−1)m.fα; f(n$i± α) = fα;
F (mω ± α) = Fα; F (n$i± α) = (−1)n.Fα.

5.
5In the original, [(−1)n] was written as (−)n.
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The formulas that we have just established show that we will have the values of the
functions ϕα; fα; Fα for all real and imaginary values of the variable, once we know them
for real values between ω

2 and −ω
2 and imaginary values of the form βi, where β is between

$
2 and −$

2 .
Indeed, let us suppose that one wants the values of the functions ϕ(α+ βi), f(α+ βi),

F (α+βi), where α and β are any real quantities. Putting βi in place of β in the formulas in
(10.), it is clear that the three functions concerned will be expressed by the functions: ϕα;
fα; Fα;ϕ(βi); f(βi); F (βi). Thus it only remains to determine the latter. Now, whatever
the values of α and β, we can always find two integers m and n, such as α = m.ω ± α′,
β = n$ ± β′, where α′ is a quantity between 0 and +ω

2 , and β′ between 0 and +$
2 . Thus

in virtue of equations (22.), substituting the previous values of α and β gives:

ϕ(α) = ϕ(mω ± α′) = ±(−1)m.ϕα′,
f(α) = f(mω ± α′) = (−1)m.fα′,
F (α) = F (mω ± α′) = Fα′,

ϕ(βi) = ϕ(n$i± β′i) = ±(−1)n.ϕ(β′i),
f(βi) = f(n$i± β′i) = f(β′),
F (βi) = F (n$i± β′i) = (−1)n.F (β′i).

Therefore the functions ϕα, fα, Fα, ϕ(βi), f(βi), F (βi), are expressible in the way we
just said, as will be the functions ϕ(α+ βi); f(α+ βi); F (α+ βi).

We saw earlier that ϕα is real from α = −ω
2 to α = +ω

2 and that ϕ(αi)
i is real from

α = −$
2 to α = +$

2 .
Hence, in virtue of equations (22.) it is clear:

1) that ϕ(α) and ϕ(αi)
i are real for all real values of α; ϕα is contained between −1

c and
+1
c and ϕ(αi)

i is contained between −1
e and +1

e ;

2) that ϕ(α) vanishes at α = mω and ϕ(αi)
i at α = m$, m being a positive or negative

integer; but ϕ(α) does not vanish for any other real values of α.
Noticing that fα =

√
(1− c2ϕ2α), Fα =

√
(1 + e2ϕ2α), it follows from what we have

just said:

1) that the functions f(α); F (α); f(αi); F (αi) are real for all values of α;

2) that f(α) is contained between the limits −1 and +1 and F (α) is contained between

the limits +1 and +
√(

1 + e2

c2

)
, so that Fα is positive for all real values of α;
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3) that f(αi) is positive between the limits +1 and
√(

1 + c2

e2

)
and F (αi) between the

limits −1 and +1 for all real values of α;

4) that f(α) vanishes at α =
(
m+ 1

2

)
ω and F (iα) at α =

(
m+ 1

2

)
$; but for no other

values of α.
Take note of the following corollaries that can be deduced from formulas (22.):
1) Let α = 0. In this case notice that ϕ(0) = 0, f(0) = 1, F (0) = 1. This gives

23.


ϕ(mω + n$i) = 0,
f(mω + n$i) = (−1)m,
F (mω + n$i) = (−1)n.

2) Let α = ω
2 . In virtue of the equations:

ϕ
(ω

2

)
=

1
c

; f
(ω

2

)
= 0; F

(ω
2

)
=
b

c
;

one will have

24.



ϕ

((
m+

1
2

)
ω + n$i

)
= (−1)m+n.

1
c
,

f

((
m+

1
2

)
ω + n$i

)
= 0,

F

((
m+

1
2

)
ω + n$i

)
= (−1)n.

b

c
.

3.) Let α = $
2 i. In virtue of the equations

ϕ
($

2
i
)

=
i

e
; f

($
2
i
)

=
b

e
; F

($
2
i
)

= 0;

we have:

25.


ϕ
(
mω +

(
n+ 1

2

)
$i
)

= (−1)m+n i

e
,

f
(
mω +

(
n+ 1

2

)
$i
)

= (−1)m.
b

e
,

F
(
mω +

(
n+ 1

2

)
$i
)

= 0.

4.) Let α = ω
2 + $

2 i. In virtue of the equations above,

26.


ϕ
((
m+ 1

2

)
ω +

(
n+ 1

2

)
$i
)

= 1
0 ,

f
((
m+ 1

2

)
ω +

(
n+ 1

2

)
$i
)

= 1
0 ,

F
((
m+ 1

2

)
ω +

(
n+ 1

2

)
$i
)

= 1
0 .

6.

11



Equations (23.), (24.), (25.) show that the function ϕ(α) always vanishes when α
is of the form α = mω + n$i; that fα always vanishes when α is of the form α =(
m+ 1

2

)
ω + n$i, and Fα always vanishes when α is of the form α = mω +

(
n+ 1

2

)
$i.

However, I claim that for all other values of α, the functions ϕα, fα, Fα will necessarily
have a nonzero value.

Indeed, let us suppose that
ϕ(α+ βi) = 0,

α and β being real quantities. By virtue of the first formula in (10.), this equation can be
written as follows:

ϕα.f(βi).F (βi) + ϕ(βi).fα.Fα
1 + e2c2ϕ2αϕ2(βi)

= 0.

Now the quantities ϕα, f(βi), F (βi) are real and ϕ(βi) is of the form i.A, where A is
real; thus this equation cannot hold unless both:

ϕ(α).f(βi).F (βi) = 0; ϕ(βi).fα.Fα = 0.

These equations can only be satisfied in two ways, namely, by letting

ϕ(α) = 0, ϕ(βi) = 0,

or

f(βi).F (βi) = 0, fα.Fα = 0.

The first two equations give α = mω; β = n$. Noting that Fα and f(βi) can never
vanish, the latter two equations give

fα = 0, F (βi) = 0,

where

α =
(
m+

1
2

)
ω, β =

(
n+

1
2

)
$.

However for these values of α and β the value of ϕ(α + βi) becomes infinite; thus the
only values of α and β are α = mω and β = n$, and consequently, all the roots of the
equation

ϕ(x) = 0,

can be represented by

27. x = mω + n$i.

12



In the same manner, we find that all the roots of the equation

f(x) = 0

can be represented by

28. x =
(
m+

1
2

)
ω + n$i,

and those of the equation

F (x) = 0,

by

29. x = mω + (n+
1
2

)$i.

7.

The formulas in (26.) show that the three equations

ϕ(x) =
1
0
, f(x) =

1
0
, F (x) =

1
0
,

will be satisfied if x is given a value of the form

30. x =
(
m+

1
2

)
ω +

(
n+

1
2

)
$i.

Now one can demonstrate that the equations in question have no other roots.
Indeed, if

F (x) =
b

c
.

1
F
(
x− ω

2

) ; ϕ(x) =
−i
ec
.

1
ϕ
(
x− ω

2 −
$
2 i
) ; f(x) =

b

e
.

1
f
(
x− $

2 i
) ;

the equations in question entail the following:

ϕ
(
x− ω

2
− $

2
i
)

= 0; f
(
x− $

2
i
)

= 0; F
(
x− ω

2

)
= 0,

but in virtue of what we just saw, the equations give respectively:

x− ω
2 −

$
2 i = mω + n$i; x− $

2 i =
(
m+ 1

2

)
ω + n$i;

x− ω
2 = mω +

(
n+ 1

2

)
$i;

that is to say: for the three equations one will have:

13



x =
(
m+

1
2

)
ω +

(
n+

1
2

)
$i,

Q.E.D.

8.

Having found as above all the roots of the equations

ϕ(x) = 0; f(x) = 0; F (x) = 0;

ϕ(x) =
1
0

; f(x) =
1
0

; F (x) =
1
0

;

I now want to seek the roots of the more general equations

ϕ(x) = ϕa, f(x) = fa, F (x) = Fa,

where a is an arbitrary real or imaginary quantity.
First consider the equation

ϕ(x)− ϕa = 0.

In the second equation of formulas (12.), by setting

α =
x+ a

2
, β =

x− a
2

,

we find that

ϕx− ϕa =
2ϕ
(
x−a

2

)
.f
(
x+a

2

)
.F
(
x+a

2

)
1 + e2c2.ϕ2

(
x+a

2

)
ϕ2
(
x−a

2

) = 0.

This equation can only hold in one of the five following cases:

1. If ϕ
(
x−a

2

)
= 0, then x = a+ 2mω + 2n$i,

2. If f
(
x+a

2

)
= 0, then x = −a+ (2m+ 1)ω + 2n$i,

3. If F
(
x+a

2

)
= 0, then x = −a+ 2mω + (2n+ 1)$i,

4. if ϕ
(
x−a

2

)
= 1

0 , then x = a+ (2m+ 1)ω + (2n+ 1)$i,

5. If ϕ
(
x+a

2

)
= 1

0 , then x = −a+ (2m+ 1)ω + (2n+ 1)$i.

14



The solution of these five equations are given in formulas (27.), (28.), (29.).
Having found those values of x, we should discard those given by the formula

x = −a+ (2m+ 1)ω + (2n+ 1)$i,

because such a value of x gives, by virtue of (22.):

ϕx = −ϕa,

while one must have ϕx = ϕa; however the other values of x expressed by the first four
formulas are allowed. As we see, they are given by the single formula:

31. x = (−1)m+n.a+mω + n$i.

This is therefore the general expression for all the roots of the equation

ϕx = ϕa.

In the same manner, one finds that all the roots of the equation

fx = fa

can be represented by the formula

32. x = ±a+ 2mω + n$i,

and all those of the equation

Fx = Fa,

by the formula

33. x = ±a+mω + 2n$i.

§. II.
Formulas that give the values of ϕ(nα), f(nα), F (nα) expressed as rational

functions of ϕα, fα, Fα.

9.
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Let us start again with the formulas in (12.). Setting α = nβ in the 1st, 3rd, and 5th,
they become:

34.


ϕ(n+ 1)β = −ϕ(n− 1)β + 2ϕ(nβ).fβ.Fβ

R ,

f(n+ 1)β = −f(n− 1)β + 2f(nβ).fβ
R ,

F (n+ 1)β = −F (n− 1)β + 2F (nβ).Fβ
R ,

where R = 1 + c2e2.ϕ2(nβ).ϕ2β.
These formulas give the value of ϕ(n+1)β in ϕ(n−1)β and ϕ(nβ); that of f(n+1)β in

f(n−1)β and f(nβ), and that of F (n+1)β in F (n−1)β and F (nβ). Thus by successively
setting n = 1, 2, 3, . . ., we find the successive values of the functions:

ϕ(2β); ϕ(3β); ϕ(4β) . . . ϕ(nβ),
f(2β); f(3β); f(4β) . . . f(nβ),
F (2β); F (3β); F (4β) . . . F (nβ)

expressed as rational functions of the three quantities

ϕβ; fβ; Fβ.

Letting, e.g., n=1, we have:

35.


ϕ(2β) = 2.ϕβ.fβ.Fβ

1+e2c2ϕ4β
,

f(2β) = −1 + 2f2β
1+e2c2ϕ4β

,

F (2β) = −1 + 2F 2β
1+e2c2ϕ4β

.

The functions ϕ(nβ), f(nβ), F (nβ) are rational functions of ϕβ, fβ, Fβ, and they can
always be reduced to the form P

Q , where P and Q are polynomials in ϕβ, fβ, Fβ. It is
likewise clear that for the three functions we consider, the denominator will have the same
value. Thus let

35.′ ϕ(nβ) =
Pn
Qn

, f(nβ) =
P ′n
Qn

, F (nβ) =
P ′′n
Qn

,

We also have

ϕ(n+ 1)β =
Pn+1

Qn+1
, f(n+ 1)β =

P ′n+1

Qn+1
, F (n+ 1)β =

P ′′n+1

Qn+1
,

ϕ(n− 1)β =
Pn−1

Qn−1
, f(n− 1)β =

P ′n−1

Qn−1
, F (n− 1)β =

P ′′n−1

Qn−1
.

Substituting in these values, the first formula of (34.) becomes:
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Pn+1

Qn+1
= −Pn−1

Qn−1
+

2fβ.Fβ. PnQn
1 + c2e2ϕ2β. P

2
n

Q2
n

,

or

Pn+1

Qn+1
=
−Pn−1(Q2

n + c2e2ϕ2.P 2
n) + 2Pn.Qn.Qn−1.fβ.Fβ

Qn−1.(Q2
n + e2c2ϕ2β.P 2

n)
.

Equating the numerators and the denominators of these two fractions, we have

36. Pn+1 = −Pn−1(Q2
n + c2e2ϕ2β.P 2

n) + 2fβ.Fβ.Pn.Qn.Qn−1,

37. Qn+1 = Qn−1(Q2
n + e2c2ϕ2β.P 2

n).

The second and third equations from (34.) will give in the same manner:

38. P ′n+1 = −P ′n−1.(Q
2
n + c2e2ϕ2β.P 2

n) + 2fβP ′n.Qn.Qn−1,

39. P ′′n+1 = −P ′′.(Q2
n + c2e2ϕ2β.P 2

n) + 2Fβ.P ′′n .Qn.Qn−1.

By setting n = 1, 2, 3 . . . , in the four formulas and noting that:

Q0 = 1; Q1 = 1; P0 = 0; P1 = ϕβ;
P ′0 = 1; P ′1 = fβ P ′′0 = 1; P ′′1 = Fβ;

one can successively find the polynomials Qn, Pn, P ′n, P ′′n for all values of n.
For brevity, let

40. ϕβ = x, fβ = y, Fβ = z and
41. Rn = Q2

n + e2c2x2P 2
n .

The previous formulas give:

42.


Qn+1 = Qn−1.Rn,
Pn+1 = −Pn−1.Rn + 2yz.Pn.Qn.Qn−1,
P ′n+1 = −P ′n−1Rn + 2y.P ′n.Qn.Qn−1,
P ′′n+1 = −P ′′n−1.Rn + 2z.P ′′n .Qn.Qn−1.

Letting n = 1, 2,, we have:

43.


R1 = Qn−1.Rn,
Q2 = Q0R1 = 1 + e2c2x4,
P2 = −P0R1 + 2yzP1.Q1.Q0 = 2xyz,
P ′2 = −P ′0R1 + 2yP ′1.Q1.Q0 = −1− e2c2x4 + 2y2,
P ′′2 = −P ′′0R1 + 2zP ′′1 .Q1Q0 = −1− e2c2x4 + 2z2.
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44.



R2 = Q2
2 + e2c2x2.P 2

2 = (1 + e2c2x4)2 + e2c2x2.4x2y2z2,
Q3 = Q1R2 = R2,
P3 = −P1R2 + 2yzP2Q2Q1 = −xR2 + 2y2z2x.Q2

= x{2y2z2.Q2 −R2},
P ′3 = −P ′1.R2 + 2y.P ′2.Q2Q1 = −y.R2 + 2yP ′2Q2

= y{2Q2P
′
2 −R2},

P ′′3 = z{2Q2P
′′
2 −R2}.

Continuing in this way and noting that y2 = 1− c2x2, z2 = 1 + e2x2, we easily see that
the quantities:

Qn,
P2n
xyz ,

P2n+1

x , P ′2n,
P ′2n+1

y , P ′′2n,
P ′′2n+1

z

are polynomials in the three quantities x2, y2, z2, and consequently, also one of these
for an arbitrary integer n.

This shows that the expressions for ϕ(nβ), f(nβ), F (nβ) are of the following form:

45.


ϕ(2nβ) = ϕβ.fβ.Fβ.T, ϕ(2n+ 1)β = ϕβ.T ′,
f(2nβ) = T1, f(2n+ 1)β = fβ.T ′′,
F (2nβ) = T2, F (2n+ 1)β = Fβ.T ′′′,

where T , etc., represent rational functions of the quantities (ϕβ)2, (fβ)2, (Fβ)2.

§. III.
Solving the equations

ϕ(nβ) = Pn
Qn
, f(nβ) = P ′n

Qn
, F (nβ) = P ′′n

Qn
.

10.

According to what we have seen, the functions ϕ(nβ), f(nβ), F (nβ) may be expressed
rationally in x, y, z. The contrary case does not happen, because the equations in (35.)
are in general of very high degree. They have for this reason a certain number of roots.
We will see how one can easily express all the roots using the functions ϕ, f , F .

A. Consider first the equation ϕ(nβ) = Pn
Qn

, or Qn.ϕ(nβ) = Pn, and let us seek all the
values of x.

It is necessary to distinguish two cases, according to whether n is even or odd.:
1) If n is an even number.
According to what we saw in the preceding paragraph (45.), we have in this case

ϕ(2nβ) = ψ(x2).x.y.z,

that is to say, in virtue of the formulas
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y =
√

(1− c2x2), z =
√

(1 + e2x2),
ϕ(2nβ) = xψ(x2).

√
[(1− c2x2)(1 + e2x2)].

Thus the equation in x will become,

ϕ2(2nβ) = x2(ψ(x2))2.(1− c2x2)(1 + e2x2).

Designating the right side as θ(x2), we have

ϕ2(2nβ) = θ(x2).

One of the values of x is ϕβ, so we have

46. ϕ2(2nβ) = θ(ϕ2β),

an equation that holds for any value of β. To find the other values of x, that is, an
arbitrary root x = ϕα, we must have

ϕ2(2nβ) = θ(ϕ2α).

Now substituting α into (46.) instead of β, we get

ϕ2(2nα) = θ(ϕ2α), thus :
47. ϕ2(2nβ) = ϕ2(2nα);

an equation that reduces to these two:

ϕ(2nα) = ϕ(2nβ) and ϕ(2nα) = −ϕ(2nβ).

The first gives, in virtue of (31.),

2nα = (−1)m+µ2nβ +mω + µ$i,

where m and µ are two arbitrary positive or negative integers (including zero).
The second gives the same values for 2mα, but of opposite sign, as it is easy to see by

writing as follows:

ϕ(−2nα) = ϕ(2nβ).

All values of 2nα that satisfy equation (47.) can thus be represented by

2nα = ±
[
(−1)m+µ2nβ +mω + µ$i

]
.
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From there one deduces the value of α. Dividing by 2n, we get

α = ±
[
(−1)m+µ.β +

m

2n
ω +

µ

2n
$i
]
.

With the value for α, we get

48. ϕα = ±ϕ
[
(−1)m+µ.β +

m

2n
ω +

µ

2n
$i
]

= x.

The values of x are described by this expression. Thus they will be given explicitly by
letting the numbers m and µ be integers between −∞ and ∞. However, to insure they
are distinct, it is enough to let m and µ be integers less than 2n. In fact, whatever these
number are, we may assume they can always be reduced to the following form:

m = 2n.k +m′, µ = 2n.k′ + µ′,

where k, k′ are whole numbers and m′, µ′ are integers less than 2n. Substituting these
values into the expression for x, we get:

x = ±ϕ
{

(−1)m
′+µ′β +

m′

2n
ω +

µ′

2n
$i+ kω + k′$i

}
,

Now in virtue of (22.), this expression can be simplified to

49. x = ±ϕ
{

(−1)m
′+µ′β +

m′

2n
ω +

µ′

2n
$i

}
.

This value of x is of the same form as the preceding in (48.), only m and µ are replaced
by m′ and µ′, which are both positive and less than 2n; thus one obtains all the distinct
values of x by merely letting m and µ be all the integers between zero and 2n inclusive.
All the values are necessarily distinct. Indeed, suppose for example that we have

±ϕ
{

(−1)m
′+µ′β + m′

2nω + µ′

2n$i
}

= ±ϕ
{

(−1)m+µβ + m
2nω + µ

2n$i
}
,

from this it follows, according to (31.);

(−1)m
′+µ′β +

m′

2n
ω +

µ′

2n
$i = ±

{
(−1)m+µ.β +

m

2n
ω +

µ

2n
$i
}

+ kω + k′$i,

k and k′ integers.
This equation gives:

µ′ = k′.2n± µ, m′ = k.2n±m, (−1)m
′+µ′ = ±(−1)m+µ.
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The first two equations cannot hold unless k′ = 1, k = 1, µ′ = 2n − µ, m′ = 2n −m.
The latter becomes:

(−1)4n−m−µ = −(−1)m+µ,

from which one concludes:

(−1)nm+2µ = −1,

an absurd result.
Thus all the values of x given in formula (48.) are distinct if m and µ are positive and

less than [2m].6

The total number of values of x is, as it is easy to see, equal to 2(2n)2 = 8n2. However,
the equation ϕ2(2nβ) = θ(x2) cannot have equal roots, because in this case, one has
∂.θ(x2)
∂x = 0, which gives x a value independent of β. Thus the degree of the equation

ϕ2(2nβ) = θ(x2) is equal to the number of roots, that is, to 8n2. If for example n = 1, one
will have the equation

ϕ2(2β) = θ(x2) =
4x2(1− c2x2)(1 + e2x2)

(1 + e2c2x4)2
,

or

(1 + e2c2x4)2.ϕ2(2β) = 4x2(1− c2x2)(1 + e2x2),

and according to formula (48.) the eight roots of this equation will be

x = ±ϕβ, x = ±ϕ(−β + ω
2 ),

x = ±ϕ(−β + $
2 i), x = ±ϕ(β + ω

2 + $
2 i).

2) If n is an odd number = 2n+ 1.

In this case P2n+1

Q2n+1
is, as we saw, a rational function of x and as a consequence the

equation for x will be:

50. ϕ(2n+ 1)β =
P2n+1

Q2n+1
.

Precisely like in the preceding case, we find that all the roots of this equation can be
represented by

51. x = ϕ

(
(−1)m+µ.β +

m

2n+ 1
ω +

µ

2n+ 1
$i

)
,

6The original read “... and less than m.”
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where it is necessary to let m and µ be all the integers from −n to +n inclusive. Thus
the number of distinct roots is (2n+1)2. This is also the degree of the equation in question.
We can also express the roots by

x = (−1)m+µ.ϕ

(
β +

m

2n+ 1
ω +

µ

2n+ 1
$i

)
.

If for example n = 1, one will have an equation of degree 32 = 9.
Formula (51.) gives the following 9 values for x:

ϕ(β);
ϕ(−β − ω

3 );
ϕ(−β + ω

3 );
ϕ(−β − $

3 i);
ϕ(−β + $

3 i);
ϕ(β − ω

3 −
$
3 i);

ϕ(β − ω
3 + $

3 i);
ϕ(β + ω

3 −
$
3 i);

ϕ(β + ω
3 + $

3 i);

B. Now consider the equation

52. f(nβ) =
P ′n
Qn

and let us find the values of y that satisfy this equation. The function P ′n
Qn

is, as we saw

above, rational in y: setting P ′n
Qn

= ψ(y), the equation in y is

f(nβ) = ψ(y).

One of the roots of this equation is y = fβ, thus for arbitrary β:

53. f(nβ) = ψ(fβ).

To find the other values of y, let α be a new unknown such that y = fα. We have

f(nβ) = ψ(fα);

now in virtue of (53.), the right hand side is equal to f(nα). Thus to find α, we have
the equation:

f(nα) = f(nβ).

In virtue of (32.), this equation gives as the general expression of nα:
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nα = ±nβ + 2mω + µ$i,

m and µ being two positive or negative integers, zero included.
From here we conclude

α = ±β +
2m
n
ω +

µ

n
$i,

and as a consequence:

fα = f

(
±β +

2m
n
ω +

µ

n
$i

)
= y.

This is the general value of y. Now to get the distinct values for y, I claim that it is
enough to take β with the + sign, and to let m and µ take on all the integers less than n.
Indeed, since we have f(+α) = f(−α), initially we get:

f

(
−β +

2m
n
ω +

µ

n
$i

)
= f

(
β − 2m

n
ω − µ

n
$i

)
.

Thus, in the expression for y, one can always take β with the + sign. Hence all the
values of y are given by the expression

54. y = f

(
β +

2m
n
ω +

µ

n
$i

)
.

Now whatever the numbers m and µ, we may suppose that

m = k.n+m′, µ′ = k′.n+ µ′,

where k, k′, m′, µ′ are integers, the two latter being both positive and less than n.
Substituting we get

y = f

(
β +

2m′

n
ω +

µ′

n
$i+ 2kω + k′$i

)
.

Now in virtue of (22.), the right side of this equation is equal to

55. f

(
β +

2m′

n
ω +

µ′

n
$i

)
= y,

a quantity of the same form as the right side of (54.); only m′ and µ′ are positive and
less than n. Thus etc.

Letting m and µ take on all the possible values less than n, one finds n2 values for y.
However in general, all these quantities are distinct. Indeed, suppose for example,
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f

(
β +

2m
n
ω +

µ

n
$i

)
= f

(
β +

2µ′

n
+
µ′

n
$i

)
,

in virtue of (32.), by letting k, k′ be two integers:

β +
2m
n
ω +

µ

n
$i =

2m′

n
ω +

µ′

n
$i+ 2kω + k′$i,

Since β can have any irrational value, it is clear that this equation can not hold unless
one chooses the upper sign (+) on the right side. This then gives

2m
n
ω +

µ

n
$i =

2m′

n
ω +

µ′

n
$i+ 2kω + k′$i,

from which we deduce by equating the real and imaginary parts:

m = m′ + kn, µ = µ′ + k′n,

absurd equations, given that the numbers m, m′, µ, and µ′ are all positive and smaller
than n. So in general the equation

f(nβ) = ψ(y)

has n2 distinct roots and no more.
Now generally all the roots of this equation are different. Indeed, if two were equal, we

would have both:

f(nβ) = ψ(y) and 0 = ψ′(y),

and this is impossible, if we note that the coefficients of y in ψ(y) do not contain β.
The general equation (52.) is necessarily of degree n2.

C. The equation

56. F (nβ) =
P ′′n
Qn

,

can be treated in absolutely the same manner with respect to z as the equation f(nβ) =
P ′

Qn
was with respect to y, giving the general expression for the values of z:

57. z = F

(
β +

m

n
ω +

2µ
n
$i

)
,

where m and µ are positive integers less than n. There are n2 values of z, and in general
they are distinct.

Therefore the general equation (56.) is of degree n2.

11.
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Above we found all the roots of the equations

ϕ(nβ) =
Pn
Qn

, f(nβ) =
P ′n
Qn

, F (nβ) =
P ′′n
Qn

,

roots that are expressed by the formulas in (48.), (51.), (54.), (57.). All these roots are
different, except for the case of particular values of β; but for these values, the distinct
roots are given by same formulas. – In the last case, a certain number of the values of the
quantities x, y, z will be equal; but it is clear that all the equal or unequal values will be
nevertheless the roots of the equations concerned. This can be seen by making β converge
towards a particular value, which gives equal values for x, or y, or z .

Letting β = α
2n in formula (48.), the equation 58. ϕ2α = P 2

2n

Q2
2n

, has roots x = ±ϕ
(
(−1)m+µ α

2n + m
2nω + µ

2n$i
)
,

where m and µ take on all the positive integers less than 2n.
The same for formula (50.), letting β = α

2n+1 we have ϕα = P2n+1

Q2n+1
, which has roots

59. x = (−1)m+µ.ϕ

(
α

2n+ 1
+
mω + µ$i

2n+ 1

)
,

m and µ taking on all the integers from −n to +n.
Finally in (52.), (56.), letting β = α

n , we have the equation fα = P ′n
Qn
, which has roots

60. y = f

(
α

n
+

2m
n
ω +

µ

n
$i

)
,

and equation Fα = P ′′n
Qn

has roots

61. z = F

(
α

n
+
m

n
ω +

2µ
n
$i

)
,

where m and µ are contained between the limits 0 and n − 1 inclusive. If n is odd
= 2n+ 1, we may suppose that

y = (−1)m.f
(

α
2n+1 + m

2n+1ω + µ
2n+1$i

)
,

z = (−1)µ.F
(

α
2n+1 + m

2n+1ω + µ
2n+1$i

)
,

where m and µ take on integer values from −n to +n.
In all these equations the quantity α can have an arbitrary value.
Like the specific case, we must notice the following:
1) Letting α = 0 in (58.) and (59.), we get the equations

62.


P 2

2n = 0, the roots are x = ±ϕ
(
m
2nω + µ

2n$i
)

(the limits of m and µ being 0 and 2n− 1),
P2n+1 = 0, the roots are x = ϕ

(
m

2n+1ω + µ
2n+1$i

)
(the limits of m and µ being − n and + n).
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2) Letting α = ω
2 in (60.) and letting α = $

2 i in (61.), noting that f(ω2 ) = 0, F ($2 i) = 0,
we obtain the two equations:

63. P ′n = 0, the roots are y = f
(
(2m+ 1

2)ωn + µ
n$i

)
64. P ′′n = 0, the roots are z = F

(
m
n ω + (2µ+ 1

2)$in
) } (the limits of

m and µ are
0 and n− 1 )

3) Letting α = ω
2 + $

2 i in (58.), noting that ϕ(ω2 + $
2 i) = 1

0 , we get the equation

Q2
2n = 0,

whose roots are:

x = ±ϕ
[(
m+

1
2

(−1)m+µ

)
ω

2n
+
(
µ+

1
2

(−1)m+µ

)
.
$i

2n

]
.

The values of x must be equal in pairs and one will easily see that the distinct values
can be represented by

65. x = ϕ

[(
m+

1
2

)
ω

2n
+
(
µ+

1
2

)
$i

2n

]
,

by letting m and µ take on all the integer values from 0 to 2n− 1. These are thus the
roots of the equation

Q2n = 0, with respect to x.

Likewise, letting α = ω
2 + $

2 i in (58.) gives the equation

Q2n+1 = 0,

whose roots are:

66.


x = (−1)m+µ.ϕ

[
(m+ 1

2) ω
2n+1 + (µ+ 1

2) $i
2n+1

]
,

y = (−1)m.f
[
(m+ 1

2) ω
2n+1 + (µ+ 1

2) $i
2n+1

]
,

z = (−1)µ.F
[
(m+ 1

2) ω
2n+1 + (µ+ 1

2) $i
2n+1

]
,

m and µ taking all the integers from −n to +n.
Among the values of x, y, z, we must note those that correspond to m = n, µ = n.
Then we have

x = (−1)n.ϕ(ω2 + $
2 i) = 1

0 ,
y = (−1)n.f(ω2 + $

2 i) = 1
0 ,

z = (−1)n.F (ω2 + $
2 i) = 1

0 .
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These infinite values show that the equation Q2n+1 = 0 is of degree one less than the
equation it came from. By discarding these values, the (2n+ 1)2− 1 remaining will be the
roots of the equation Q2n+1 = 0.

§. IV.
The algebraic solution of the equations

ϕα = P2n+1

Q2n+1
, fα =

P ′2n+1

Q2n+1
, Fα =

P ′′2n+1

Q2n+1
.

12.

We saw in the preceding §, how we can easily express the roots of the equations in
question using the functions ϕ, f , F . We will now deduce the solutions to these same
equations, or determine the functions ϕ(αn ), f(αn ), F (αn ), as functions of ϕα, fα, Fα.

As we have

ϕ

(
α

mµ

)
= ϕ

(
1
m

(
α

µ

))
,

we may assume that n is a prime number. Let us first consider the case when n = 2,
and then when n is an odd number.

A. Expressions of the Functions ϕ(α
2
), f(α

2
), F (α

2
).

13.

The values of ϕ(α2 ), f(α2 ), F (α2 ) can be found very easily in the following manner. In
formulas (35.), suppose β = α

2 , set

x = ϕ
(α

2

)
, y = f

(α
2

)
, z = F

(α
2

)
,

this gives:

f(α) =
y2 − c2x2z2

1 + e2c2x4
, F (α) =

z2 + e2y2x2

1 + e2c2x4
,

or, by substituting the values of y2 and x2 and x2:

f(α) =
1− 2c2x2 − c2e2x4

1 + e2c2x4
, F (α) =

1 + 2e2x2 − e2c2x4

1 + e2c2x4
,

These equations give

1 + fα =
2(1− 2c2x2)
1 + e2c2x4

, 1− fα =
2c2x2(1 + e2x2)

1 + e2c2x4
,

Fα− 1 =
2e2x2(1− c2x2)

1 + e2c2x4
, Fα+ 1 =

2(1 + e2x2)
1 + e2c2x4

,
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which gives

Fα− 1
1 + fα

= e2.x2,
1− fα
Fα+ 1

= c2x2,

and from this, noting that y2 = 1− c2x2, z2 = 1 + e2x2:

z2 =
Fα+ fα

1 + fα
, y2 =

Fα+ fα

1 + Fα
.

From these equations one concludes that, extracting the square roots and replacing x,
y, x with their values ϕ(α2 ), f(α2 ), F (α2 ):

67.


ϕ
(
α
2

)
= 1

c

√(
1−fα
1+Fα

)
= 1

e

√(
Fα−1
fα+1

)
,

f
(
α
2

)
=
√(

Fα+fα
1+Fα

)
, F

(
α
2

)
=
√(

Fα+fα
1+fα

)
.

Such are the simplest forms that one can give for the values of the functions ϕ(α2 ), f(α2 ),
F (α2 ). In this manner we can express ϕ(α2 ), f(α2 ), F (α2 ) in terms of fα, Fα algebraically.
In the same way, ϕ(α4 ), f(α4 ), F (α4 ) are expressible in f(α2 ), F (α2 ), and so on. Thus in
general, the functions ϕ( α2n ), f( α2n ), F ( α2n ) can be expressed by means of the extraction of
square roots of a function of three quantities ϕα, fα, Fα.

Applying the above bisection formulas to an example, suppose α = ω
2 .

So we have f(ω2 ) = 0, F (ω2 ) =
√

(e2+c2)

c , and thus by substituting:

ϕ(ω4 ) = 1
c

√(
1

1+ 1
c

√
(e2+c2)

)
= 1

e .

√(
1
c

√
(e2 + c2)− 1

)
,

f(ω4 ) =
√

1
c

√
(e2+c2)

1+ 1
c

√
(e2+c2)

,

F (ω4 ) =
√

(1
c

√
(e2 + c2))

or

ϕ(ω4 ) = 1r“
c2+c
√

(e2+c2)
” =

r“√
(e2+c2)−c

”
ec ,

f(ω4 ) =
4
√

(e2+c2)r“
c+
√

(e2+c2)
” = 1

e .

√(
e2 + c2 − c

√
(e2 + c2)

)
F (ω4 ) = 4

√(
1 + e2

c2

)
=
√

[F (ω2 )].

B. Expressions for the Functions ϕ( α
2n+1

), f( α
2n+1

), F ( α
2n+1

) in algebraic functions
of the quantities ϕα, fα, Fα.
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14.

To find the values of ϕ( α
2n+1), f( α

2n+1), F ( α
2n+1) in ϕα, fα, Fα it is necessary to solve

the equations

ϕα =
P2n+1

Q2n+1
, fα =

P ′2n+1

Qn+1
, Fα =

P ′′2n+1

Q2n+1
,

that are all of degree (2n + 1)2. We will see that it is always possible solve these
algebraically.

Let

68. ϕ1β =
+n∑

m=−n
ϕ

(
β +

2mω
2n+ 1

)
and

69. ψβ =
+n∑

µ=−n
θµ.ϕ1

(
β +

2µ$i
2n+ 1

)
, ψ1β =

+n∑
µ=−n

θµϕ1

(
β − 2µ$i

2n+ 1

)
,

where θ is an arbitrary imaginary root of the equation θ2n+1 − 1 = 0.
That stated, I claim that the two quantities

ψβ.ψ1β and (ψβ)2n+1 + (ψ1β)2n+1,

can be expressed rationally in ϕ(2n+ 1)β.
First write ϕ1β as follows:

ϕ1β = ϕβ.
n∑

m=1

.

{
ϕ

(
β +

2mω
2n+ 1

)
+ ϕ

(
β − 2mω

2n+ 1

)}

= ϕβ.
n∑

m=1

(−1)m.
2ϕβ.f( 2mω

2n+1).F ( 2mω
2n+1)

1 + e2c2ϕ2( 2mω
2n+1).ϕ2β

,

we see that ϕ1β can be expressed rationally in ϕβ. Thus let ϕ1β = χ(ϕβ). In similar
manner:

ϕ1

(
β ± 2µ$i

2n+ 1

)
= χ

(
ϕ

(
β ± 2µ$i

2n+ 1

))
= χ

(
ϕβ.f( 2µ$i

2n+1).F ( 2µ$i
2n+1)± ϕ( 2µ$i

2n+1).fβ.Fβ

1 + e2c2.ϕ2( 2µ$i
2n+1).ϕ2β

)
,
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or by setting ϕβ = x:

f

(
2µ$i
2n+ 1

)
.F

(
2µ$i
2n+ 1

)
= a, ϕ

(
2µ$i
2n+ 1

)
= b,

and by substituting the values of
√

(1− c2x2) and
√

(1 + e2x2) for fβ and Fβ:

ϕ1

(
β ± 2µ$i

2n+ 1

)
= χ

(
ax± b.

√
[(1− c2x2)(1 + e2x2)]
1 + e2c2b2.x2

)
;

where χ designates a rational function. The right side of this equation can be put into
the form

Rµ ±R′µ.
√

[(1− c2x2)(1 + e2x2)],

where Rµ and R′µ are rational functions of x.
Thus

ϕ1

(
β ± 2µ$i

2n+ 1

)
= Rµ ±R′µ.

√
[(1− c2x2)(1 + e2x2)]

Substituting this into the expressions for ψβ and ψ1β, we get:

70.


ψβ =

+n∑
µ=−n

(+θ)µ.Rµ +
√

[(1− c2x2)(1 + e2x2)].
+n∑

µ=−n
(+θ)µ.R′µ,

ψ1β =
+n∑

µ=−n
(+θ)µ.Rµ −

√
[(1− c2x2)(1 + e2x2)].

+n∑
µ=−n

(+θ)µ.R′µ.

Now Rµ and R′µ are rational functions of x as well as the quantities
+n∑

µ=−n
(+θ)µ.Rµ and

+n∑
µ=−n

(+θ)µ.R′µ.

Therefore by raising ψβ and ψ1β to the (2n+ 1)st power, the two quantities (ψβ)2n+1

and (ψ1β)2n+1 can be put into the form:

(ψβ)2n+1 = t+ t′.
√

[(1− c2x2)(1 + e2x2)],
(ψ1β)2n+1 = t− t′.

√
[(1− c2x2)(1 + e2x2)],

t and t′ being rational functions of x. By taking the sum of the values of (ψβ)2n+1 and
(ψ1β)2n+1 we have
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(ψβ)2n+1 + (ψ1β)2n+1 = 2t.

Thus the quantity (ψβ)2n+1 + (ψ1β)2n+1 can be expressed rationally in x. Similarly for
the product ψβ.ψ1β, as we see from the equations in (70.).

Thus we can make

71.
{
ψβ.ψ1β = λ(x),
(ψβ)2n+1 + (ψ1β)2n+1 = λ1(x),

λ(x) and λ1(x) designating rational functions of x. Now these functions have the
property of not changing value when we substitute forf x another arbitrary root of the
equation

ϕ(2n+ 1)β =
P2n+1

Q2n+1
.

First consider the function λ(x). Setting the value of x = ϕβ we have

ψβ.ψ1β = λ(ϕβ),

from which we conclude, substituting β + 2kω
2n+1 + 2k′$i

2n+1 in place of β:

λ

[
ϕ

(
β +

2kω
2n+ 1

+
2k′$i
2n+ 1

)]
= ψ

(
β +

2kω
2n+ 1

+
2k′$i
2n+ 1

)
.ψ1

(
β +

2kω
2n+ 1

+
2k′$i
2n+ 1

)
.

That given, note that:

72.
+n∑

m=−n
ψ(m+ k) =

+n∑
m=−n

ψ(m) +
k∑

m=1

[ψ(m+ n)− ψ(m− n− 1)],

setting β = β + 2kω
2n+1 in the expression for ψ1β, we have :

ϕ1

(
β +

2kω
2n+ 1

)
=

n∑
m=−n

ϕ

(
β +

2(k +m)
2n+ 1

ω

)

= ϕ1β +
k∑

m=1

{
ϕ

(
β +

2(n+m)ω
2n+ 1

)
− ϕ

(
β +

2(m− n− 1)ω
2n+ 1

)}
,

now: ϕ
(
β + 2(m−n−1)

2n+1 ω
)

= ϕ
(
β + 2(m+n)

2n+1 ω − 2ω
)

= ϕ
(
β + 2(m+n)

2n+1 ω
)
,

thus:

73. ϕ1

(
β +

2kω
2n+ 1

)
= ϕ1β.
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Substituting β + 2k′$i
2n+1 + 2kω

2n+1 in place of β in the expression for ψβ we find

ψ

(
β +

2k′$i
2n+ 1

+
2kω

2n+ 1

)
=

+n∑
µ=−n

θµ.ϕ1

(
β +

2(k′ + µ)$i
2n+ 1

+
2kω

2n+ 1

)
,

now in virtue of (73.):

ϕ1

(
β +

2(k′ + µ)$i
2n+ 1

+
2kω

2n+ 1

)
= ϕ1

(
β +

2(k′ + µ)$i
2n+ 1

)
,

thus

ψ

(
β +

2k′$i
2n+ 1

+
2kω

2n+ 1

)
=

+n∑
µ=−n

θµ.ϕ1

(
β +

2(k′ + µ)$i
2n+ 1

)
.

In virtue of (72.) we have

+n∑
µ=−n

θµ.ϕ1

(
β +

2(k′ + µ)$i
2n+ 1

)

= θ−k
′
.

+n∑
µ=−n

θµ.ϕ1

(
β +

2µ$i
2n+ 1

)
+

k′∑
µ=1

.θn+µ−k′ .ϕ1

(
β +

2(µ+ n)$i
2n+ 1

)

−
k′∑
µ=1

θµ−n−1−k′ .ϕ1

(
β +

2(µ− n− 1)$i
2n+ 1

)
,

thus, noting that θn+µ−k′ = θµ−n−1−k′ and

ϕ1

(
β +

2(µ− n− 1)$i
2n+ 1

)
= ϕ1

(
β +

2(µ+ n)$i
2n+ 1

− 2$i
)

= ϕ1

(
β +

2(µ+ n)$i
2n+ 1

)
,

we get

74. ψ

(
β +

2k′$i
2n+ 1

+
2kω

2n+ 1

)
= θ−k

′
.ψβ.

In the same manner one can also find

ψ1

(
β +

2k′$i
2n+ 1

+
2kω

2n+ 1

)
= θk

′
.ψ1β.

These two equations give
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ψ

(
β +

2kω + 2k′$i
2n+ 1

)
.ψ1

(
β +

2kω + 2k′$i
2n+ 1

)
= ψβ.ψ1β,{

ψ

(
β +

2kω + 2k′$i
2n+ 1

)}2n+1

+
{
ψ1

(
β +

2kω + 2k′$i
2n+ 1

)}2n+1

= (ψβ)2n+1 + (ψ1β)2n+1.

In virtue of these equations we obtained, substituting in the values of λ(ϕβ) and λ1(ϕβ),
and β + 2kω+2k′$i

2n+1 in place of β:

λ(ϕβ) = λ

[
ϕ

(
β +

2kω + 2k′$i
2n+ 1

)]
,

λ1(ϕβ) = λ1

[
ϕ

(
β +

2kω + 2k′$i
2n+ 1

)]
.

Now ϕ
(
β + 2kω+2k′$i

2n+1

)
expresses an arbitrary root of the equation

ϕ(2n+ 1)β =
P2n+1

Q2n+1
.

Thus as we claimed, the functions λ(x) and λ1(x) have the same values whatever the
root we put in place x.

Hence, let x0, x1, x2, . . . , x2n+1 be these roots. We have

λ(x) =
1

2n+ 1
{λ(x0) + λ(x1) + · · ·+ λ(x2n)},

λ1(x) =
1

2n+ 1
{λ1(x0) + λ1(x1) + · · ·+ λ1(x2n)}.

Now the right hand side of these equations are symmetric rational functions of the
roots of the equation ϕ(2n+ 1)β = P2n+1

Q2n+1
. So λ(x) and λ1(x) can be expressed rationally

in ϕ(2n+ 1)β. In equations (71), making

λ(x) = B, λ1 = 2A,

gives

(ψβ)2n+1.(ψ1β)2n+1 = B2n+1; (ψβ)2n+1 + (ψ1β)2n+1 = 2A,

from which we conclude

75. ψβ = 2n+1

√
[A+

√
(A2 −B2n+1)] =

+n∑
µ=−n

θµ.ϕ1

(
β +

2µ$i
2n+ 1

)
.
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15.

Having found the value of ψβ, we easily deduce those of ϕ1β.
Indeed, by successively taking all the imaginary roots of the equation θ2n+1− 1 = 0 for

θ, indicating the corresponding values of A and B for A1, B1, A2, B2 etc., we obtain:

2n+1

√
[A1 +

√
(A2

1 −B
2n+1
1 )] =

+n∑
µ=−n

θµ1 .ϕ1

(
β +

2µ$i
2n+ 1

)
,

2n+1

√
[A2 +

√
(A2

2 −B
2n+1
2 )] =

+n∑
µ=−n

θµ2 .ϕ1

(
β +

2µ$i
2n+ 1

)
,

· · ·
2n+1

√
[A2n +

√
(A2

2n −B
2n+1
2n )] =

+n∑
µ=−n

θµ2n.ϕ1

(
β +

2µ$i
2n+ 1

)
,

Similarly knowing the sum of the roots:

+n∑
m=−n

+n∑
−n

ϕ

(
β +

2mω
2n+ 1

+
2µ$i
2n+ 1

)
=

+n∑
µ=−n

ϕ1

(
β +

2µ$i
2n+ 1

)
,

which equals (2n + 1)ϕ(2n + 1)β (as we will see later). Adding these equations term
by term, then multiplying the first by θ−k0 , the second by θ−k1 , the third by θ−k2 . . . and the
(2n)th by θ−k2n , we get:

+n∑
µ=−n

(θµ−k0 + θµ−k1 + θµ−k2 + · · ·+ θµ−k2n + 1).ϕ1

(
β +

2µ$i
2n+ 1

)

= (2n+ 1).ϕ(2n+ 1)β +
2n∑
µ=1

θ−kµ .
2n+1

√
[Aµ +

√
(A2

µ −B2n+1
µ )];

Now the sum

1 + θµ−k1 + θµ−k2 + · · ·+ θµ−k2n

reduces to zero for all values of k except for k = µ. In the latter case, it equals 2n+ 1.
So the first term in the preceding equation becomes

(2n+ 1).ϕ1

(
β +

2k$i
2n+ 1

)
,

substituting and dividing by (2n+ 1), we thus have:
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76. ϕ1

(
β +

2k$i
2n+ 1

)
=

ϕ(2n+ 1)β +
1

2n+ 1
.
{
θ−k1

2n+1

√
[A1 +

√
(A2

1 −B
2n+1
1 )] + θ−k2

2n+1

√
[A2 +

√
(A2

2 −B
2n+1
2 )] + . . .

. . .+ θ−k2n

2n+1

√
[A2n +

√
(A2

2n −B
2n+1
2n )]

}
For k = 0, we have:

77. ϕ1β = ϕ(2n+ 1)β +
1

2n+ 1

{
2n+1

√
[A1 +

√
(A2

1 −B
2n+1
1 )] +

2n+1

√
[A2 +

√
(A2

2 −B
2n+1
2 )] + · · ·

· · ·+ 2n+1

√
[A2n +

√
(A2

2n −B
2n+1
2n )].

16.

Having thus found the value of ϕ1β, we must find ϕβ. Now this can be done easily as
follows:

Let

78. ψ2β =
+n∑

m=−n
θm.ϕ

(
β +

2mω
2n+ 1

)
; ψ3β =

+n∑
m=−n

θm.ϕ

(
β − 2mω

2n+ 1

)
,

we have

ϕ

(
β ± 2mω

2n+ 1

)
=
ϕβ.f( 2mω

2n+1).F ( 2mω
2n+1)± fβ.Fβ.ϕ( 2mω

2n+1)

1 + e2c2.ϕ2( 2mω
2n+1).ϕ2β

.

From there it follows that one can put

ϕ2β = r + fβ.Fβ.s; ϕ3β = r − fβ.Fβ.s,

where r and s are rational functions of ϕβ.
From there we conclude

79.
{

ψ2β.ψ3β = χ(ϕβ),
(ψ2β)2n+1 + (ψ3β)2n+1 = χ1(ϕβ),

χ(ϕβ) and χ1(ϕβ) being two rational functions of ϕβ.
That stated, I claim that χ(ϕβ) and χ1(ϕβ) can be expressed rationally in ϕ1β.
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We saw that

80. ϕ1β = ϕβ +
n∑

m=1

{
2ϕβ.F ( 2mω

2n+1).F ( 2mω
2n+1)

1 + e2c2.ϕ2( 2mω
2n+1)ϕ2β

}
.

Setting ϕβ = x, we have an equation in x of degree (2n + 1). A root of this equation
is x = ϕβ; now substituting β + 2kω

2n+1 for β, ϕ1β does not change the value. Thus x =

ϕ
(
β + 2kω

2n+1

)
will be a root whatever the integer k. By now giving k the integer values

from −n to +n, ϕ
(
β + 2kω

2n+1

)
takes 2n+ 1 different values. Hence these 2n+ 1 quantities

will be precisely the 2n+ 1 roots of the equation in x.
That stated, substituting β+ 2kω

2n+1 for β in the expressions for ψ2β it becomes, in virtue
of (72.):

ψ2

(
β +

2kω
2n+ 1

)
=

+n∑
m=−n

θmϕ

(
β +

2(k +m)ω
2n+ 1

)

= θ−kψ2β +
k∑

m=1

θm+n−k.ϕ

(
β +

2(m+ n)ω
2n+ 1

)

−
k∑

m=1

θm−n−1−k.ϕ

(
β +

2(m− n− 1)ω
2n+ 1

)
,

whence, seeing that θm+n−k = θm−n−1−k and ϕ
(
β + 2(m−n−1)

2n+1 ω
)

= ϕ
(
β + 2(m+n)ω

2n+1

)
,

the result is

81. ψ2

(
β +

2kω
2n+ 1

)
= θ−k.ψ2β.

In the same way we have

ψ3

(
β +

2kω
2n+ 1

)
= θ+k.ψ3β.

We see in virtue of these relations that the equations that give the values of of the
functions χ(ϕβ) and χ1(ϕβ) lead to the two equalities:

χ1

[
ϕ

(
β +

2kω
2n+ 1

)]
= χ1(ϕβ),

χ

[
ϕ

(
β +

2kω
2n+ 1

)]
= χ(ϕβ).

36



From which one deduces

χ(ϕβ) =
1

2n+ 1
.

+n∑
k=−n

χ

[
ϕ

(
β +

2kω
2n+ 1

)]
,

χ1(ϕβ) =
1

2n+ 1
.

+n∑
k=−n

χ1

[
ϕ

(
β +

2kω
2n+ 1

)]
.

Now these values of χ(ϕβ) and χ1(ϕβ) are rational functions and symmetric for all of
the roots of equation (80.). So they can be expressed rationally by the coefficients of the
same equation, i.e., rationally in ϕ1β.

Let

χ(ϕβ) = D, χ1(ϕβ) = 2C,

the equations in (79.) give

ψ2β = 2n+1

√
[C +

√
(C2 −D2n+1)],

from where, substituting in the value of ψ2β:

82. 2n+1

√
[C +

√
(C2 −D2n+1)] =

+n∑
m=−n

θm.ϕ

(
β +

2mω
2n+ 1

)
.

From which we conclude, substituting θµ for θ and designating the values corresponding
to C and D by Cµ and Dµ:

θ−kµ
2n+1

√
[Cµ +

√
(C2

µ −D2n+1
µ )] =

+n∑
m=−n

θm−kµ .ϕ

(
β +

2mω
2n+ 1

)
.

Joining it to the equation

ϕ1β =
+n∑

m=−n
ϕ

(
β +

2mω
2n+ 1

)
,

we easily deduce that:

83. (2n+ 1).ϕ
(
β +

2kω
2n+ 1

)
= ϕ1β +

2n∑
µ=1

θ−kµ .
2n+1

√
[Cµ +

√
(C2

µ −D2n+1
µ )].

Setting k = 0, it becomes:
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84. ϕβ =
1

2n+ 1

{
ϕ1β +

2n+1

√
[C1 +

√
(C2

1 −D
2n+1
1 )] + · · ·+ 2n+1

√
[C2n +

√
(C2

2n −D
2n+1
2n )]

}
.

This equation gives ϕβ as an algebraic function of ϕ1β. Now previously we found that
ϕ1β is an algebraic function of ϕ(2n+ 1)β. So in place of β putting α

2n+1 , we have ϕ( α
2n+1)

as an algebraic function of ϕα.
Using a totally similar analysis, we find f( α

2n+1) in fα and F ( α
2n+1) in Fα.

17.

The values that we have just found for the quantities ϕ1β and ϕβ, the first in ϕ(2n+1)β
and the second in ϕ1β, each contain a sum of 2n different radicals of degree (2n+ 1). The
result is (2n + 1)2n values for ϕβ, ϕ1β, . . . ., whereas each of these quantities is the root
of an equation of (2n+ 1)th degree. So we can give the expressions for ϕβ and ϕ1β a form
so that the number of values for these quantities is precisely equal to 2n+ 1.

That is for

θ = cos
2π

2n+ 1
+ i sin

2π
2n+ 1

,

we can make

θ1 = θ, θ2 = θ2, θ3 = θ3, . . . , θ2n = θ2n.

The same for

85.


ψk(β) =

+n∑
µ=−n

θkµ.ϕ1

(
β +

2µ$i
2n+ 1

)
,

ψk1 (β) =
+n∑

µ=−n
θkµ.ϕ1

(
β − 2µ$i

2n+ 1

)
,

we have in virtue of (74.)

ψk
(
β +

2ν$i
2n+ 1

)
= θ−kν .ψk(β),

ψk1

(
β +

2ν$i
2n+ 1

)
= θ+kν .ψk1 (β),

ψ1

(
β +

2ν$i
2n+ 1

)
= θ−ν .ψ1(β),

ψ1
1

(
β +

2ν$i
2n+ 1

)
= θ+ν .ψ1

1(β).
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Now let

86.


ψk(β)
(ψ1β)k

+
ψk1 (β)
(ψ1

1β)k
= P (ϕβ),

ψk(β)
(ψ1β)k−2n−1

+
ψk1 (β)

ψ1
1(β)k−2n−1

= Q(ϕβ),

P (ϕβ) and Q(ϕβ) being rational functions of ϕβ; however, by substituting β+ 2mω+2µ$i
2n+1

for β, it is clear in virtue of the formulas that P and Q do not change values; thus we have

P (ϕβ) =
1

(2n+ 1)2
.

+n∑
m=−n

+n∑
µ=−n

P

[
ϕ

(
β +

2mω + 2µ$i
2n+ 1

)]
;

however the right side is a symmetric rational function of the roots of the equation
ϕ(2n + 1)β = P2n+1

Q2n+1
, so P (ϕβ) can be expressed rationally in ϕ(2n + 1)β. It is the same

for Q(ϕβ). Knowing these two quantities, the equations in (86.) give

ψk(β)
(ψ1β)k

{
1−

(
ψ1

1β

ψ1β

)2n+1
}

= P (ϕβ)− Q(ϕβ)
(ψ1

1β)2n+1
,

now

ψ1
1β = A1 +

√
(A2

1 −B
2n+1
1 ),

ψ1
1β = A1 −

√
(A2

1 −B
2n+1
1 )

hence

ψk(β)
(ψ1β)k

.2
√

(A2
1 −B

2n+1
1 ) = Q(ϕβ)−

[
A1 −

√
(A2

1 −B
2n+1
1 )

]
.P (ϕβ).

So we have

ψkβ = (ψ1β)k.
{
Fk +Hk.

√
(A2

1 −B
2n+1
1 )

}
,

where Fk and Hk are rational functions of ϕ(2n + 1)β. Replacing A1 and B1 and
substituting in the values of ψkβ and (ψ1β)k, it becomes:

2n+1

√[
Ak +

√(
A2
k −B

2n+1
k

)]
=
[
A+

√
(A2 −B2n+1)

] k
2n+1

[
Fk +Hk.

√
(A2 −B2n+1)

]
,

therefore the value of ϕ1β becomes:
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87. ϕ1β = ϕ(2n+ 1)β +
1

2n+ 1
.

{[
A+

√
(A2 −B2n+1)

] 1
2n+1

+
[
F2 +H2

√
(A2 −B2n+1

2n )
] [
A+

√
(A2 −B2n+1)

] 2
2n+1

+ · · ·+
[
F2n +H2n

√
(A2 −B2n+1)

] [
A+

√
(A2 −B2n+1)

] 2n
2n+1

}
.

By a very similar process we find that

88. ϕβ =
1

2n+ 1

{
ϕ1β +

[
C +

√
(C2 −D2n+1)

] 1
2n+1

+
[
K2 + L2

√
(C2 −D2n+1)

] [
C +

√
(C2 −D2n+1)

] 2
2n+1

+ · · ·+
[
K2n + L2n

√
(C2 −D2n+1)

] [
C +

√
(C2 −D2n+1)

] 2n
2n+1

}
,

where K2, L2,K3, L3 . . . . K2n, L2n are rational functions of ϕ1β.
These expressions for ϕ1β and ϕβ only have 2n + 1 different values that one obtains

by assigning the 2n+ 1 values of the radicals. — It follows from our analysis that we can
take

√
(A2 −B2n+1) and

√
(C2 −D2n+1) with whatever sign we please.

18.

The value that we found for ϕ(β) or ϕ( α
2n+1) gives, in addition to the function ϕα, the

following ones:

e, c, θ
ϕ( mω

2n+1), ϕ( m$i2n+1), f( mω
2n+1),

f( m$i2n+1), F ( mω
2n+1), F ( m$i2n+1),

for arbitrary values of m from 1 to 2n. Now, whatever the value of m, we can al-
ways algebraically express ϕ( mω

2n+1), f( mω
2n+1), F ( mω

2n+1) and ϕ( ω
2n+1), and ϕ( µ$i

2n+1), f( µ$i
2n+1),

F ( µ$i
2n+1) and ϕ( $i

2n+1). Everything there is known in the expression for ϕ( α
2n+1) except the

two quantities that are independent of α; ϕ( ω
2n+1), ϕ( $i

2n+1). — These quantities depend
only on c and e and they can be found by solving an equation of degree (2n + 1)2 − 1,
knowing the equation P2n+1

x = 0. — We will see in the following section how we can reduce
the solution to that of equations of lower degree.
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§. V.
C. On the equation P2n+1 = 0.

19.

The expression we just found for ϕ( α
2n+1) contains, as we saw, the two constants ϕ( ω

2n+1)
and ϕ( $i

2n+1). We found these quantities by solving the equation

P2n+1 = 0,

for which the roots are represented by

x = ϕ

(
mω + µ$i

2n+ 1

)
,

where m and µ can be integers from −n to +n. One of these roots, corresponding to
m = 0, µ = 0, is equal to zero. So P2n+1 is divisible by x. Ignoring this factor, we have an
equation

R = 0, of degree (2n+ 1)2 − 1.

Setting x2 = r, equation (90.) R = 0 in r, is of degree (2n+1)2−1
2 = 2.n(n+ 1), and the

roots of the equation are

91. r = ϕ2

(
mω + µ$i

2n+ 1

)
,

µ and m being all the positive values below n, disregarding the zero root.
We will now see how one can reduce the solution of the equation R = 0 to that of of

two equations, one of degree n and the other of degree 2n+ 2.
To begin with, I claim that the values of r can all be represented by

92. ϕ2

(
mω

2n+ 1

)
and ϕ2

(
m
µω +$i

2n+ 1

)
. . . ,

where we give µ all the integer values from 0 to 2n, and m those from 1 to n.
Indeed, ϕ2

(
mω

2n+1

)
represents initially n values of r; now the other values can be rep-

resented by ϕ2
(
mµω+$i

2n+1

)
. For example, let mµ = (2n+ 1)k +m′, where m′ is an integer

between −n and n. Substituting we have

ϕ2

(
m.
µω +$i

2n+ 1

)
= ϕ2

(
k.ω +

m′ω +m$i

2n+ 1

)
= ϕ2

(
m′ω +m$i

2n+ 1

)
= ϕ2

(
−m′ω −m$i

2n+ 1

)
.
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thus ϕ2
(
m.µω+$i

2n+1

)
is a value of r; now each value of m gives a different value of m′.

Since if one has

m1µ = (2n+ 1)k1 +m′,

it follows that

(m1 −m)µ = (2n+ 1).(k − k1),

which is impossible, as 2n+ 1 is a prime number.
Thus ϕ2

(
m.µω+$i

2n+1

)
combined with ϕ2

(
mω

2n+1

)
represent all the values of r.

That stated, let

93.
[
r − ϕ2

(
ω

2n+ 1

)][
r − ϕ2

(
2ω

2n+ 1

)]
· · ·
[
r − ϕ2

(
nω

2n+ 1

)]
= rn + pn−1.r

n−1 + pn−2.r
n−2 + · · ·+ p1.r + p0.

The quantities p0, p1, . . . , pn−1 are symmetric rational functions of ϕ2
(

ω
2n+1

)
, ϕ2

(
2ω

2n+1

)
,

. . . , ϕ2
(

nω
2n+1

)
; now these functions can be found by means of an equation of degree 2n+2.

Let p be an arbitrary symmetric rational function of ϕ2
(

ω′

2n+1

)
, ϕ2

(
2ω′

2n+1

)
, . . . , ϕ2

(
nω′

2n+1

)
,

where ω′ designates the quantity mω + µ$i.
By the formulas that we gave above for expressing ϕ(nβ) in ϕ(β), it is clear that one

can express ϕ2
(
m′. ω′

2n+1

)
as a rational function of ϕ2

(
ω′

2n+1

)
. Therefore one can make

94. p = ψ.

[
ϕ2

(
ω′

2n+ 1

)]
= θ

[
ϕ2

(
ω′

2n+ 1

)
, ϕ2

(
2ω′

2n+ 1

)
, . . . , ϕ2

(
n

ω′

2n+ 1

)]
,

θ designating a symmetric rational function. Putting νω′ in place of ω′ it becomes

95. ψ

[
ϕ2

(
νω′

2n+ 1

)]
= θ

[
ϕ2

(
νω′

2n+ 1

)
, ϕ2

(
2νω′

2n+ 1

)
, . . . , ϕ2

(
nνω′

2n+ 1

)]
.

Setting

α.ν = (2n+ 1).k′α + kα,

where kα is an integer between −n and n, the series

k1, k2, . . . , kn
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has the same terms (up to sign) as the following:

1, 2, 3, . . . , n;

So it is clear that the right side of equation (95.) has the same value as p.
Therefore:

96. ψ

[
ϕ2

(
νω′

2n+ 1

)]
= ψ

[
ϕ2

(
ω′

2n+ 1

)]
.

Setting ω′ = ω and ω′ = mω +$i in the equation gives these two:

97.


ψ

[
ϕ2

(
νω′

2n+ 1

)]
= ψ

[
ϕ2

(
ω′

2n+ 1

)]
,

ψ

[
ϕ2

(
ν.
mω +$i

2n+ 1

)]
= ψ

[
ϕ2

(
mω +$i

2n+ 1

)]
,

for brevity set

98. ϕ2

(
νω

2n+ 1

)
= rν , ϕ

2

(
ν.
mω +$i

2n+ 1

)
= rν,m,

it becomes

99. ψ.rν = ψr1; ψrν,m = ψr1,m.

That stated, let

100.
{

(p− ψr1)(p− ψr1,0)(p− ψr1,1)(p− ψr1,2) · · · (p− ψr1,2n)
= q0 + q1.p+ q2.p

2 + · · ·+ q2n+1.p
2n+1 + p2n+2.

I claim that one can express the coefficients q0, q1 etc. rationally in e and c.
First, in virtue of the known formulas we can express these coefficients rationally in t1,

t2, . . . , t2n, if for brevity we set

101. tk = (ψr1)k + (ψr1,0)k + (ψr1,1)k + · · ·+ (ψr1,2n)k.

Now it remains, therefore, to find the quantities t1, t2, . . ., which can easily be found by
means of the relations in (99.). Indeed, successively setting ν = 1, 2, . . . , n, before having
evaluated the two sides the kth power, we conclude at once that:

102.


(ψr1)k =

1
n

[(ψr1)k + (ψr2)k + · · ·+ (ψrn)k],

(ψr1,m)k =
1
n

[(ψr1,m)k + (ψr2,m)k + · · ·+ (ψrn,m)k].

So now substituting for m all the numbers 0, 1, . . . , 2n, and then substituting in the
expression for tk, we get:
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103.


n.tk = (ψr1)k + (ψr2)k + · · ·+ (ψrn)k

+(ψr1,0)k + (ψr2,0)k + · · ·+ (ψrn,0)k

+(ψr1,1)k + (ψr2,1)k + · · ·+ (ψrn,1)k

+ · · ·
+(ψr1,2n)k + (ψr2,2n)k + · · ·+ (ψrn,2n)k.

As we will see, this value of tk is a symmetric rational function of n(2n+ 2) quantities
r1, r2, . . . , rn, . . .,r1,0, r2,0, . . ., rn,0, . . . , r1,2n, r2,2n, . . . , rn,2n, that are the n(2n + 2) roots
of the equation R = 0. Therefore, as one knows, tk can be expressed rationally by the
coefficients of this equation, and consequently by a rational function of e and c. Having
thus found the quantities tk, one may deduce the values of q0, q1, . . . , q2n+1; which will also
be rational functions of e and c.

20.

That stated, supposing that

104. 0 = q0 + q1.p+ q2.p
2 + · · ·+ q2n+1.p

2n+1 + p2n+2,

one will have an equation of degree 2n+ 2, the roots of which are

ψr1, ψr1,0, ψr1,1, ψr1,2, · · · , ψr1,2n.

We will be able to find the function ψr1, that is, an arbitrary symmetric rational
function of the roots r1, r2, r3, . . . , rn, by means of an equation of degree 2n+ 2.

Hence one will have in this manner the coefficients p0, p1, . . . , pn−1, by solving n equa-
tions, each of degree 2n+ 2.

Having determined p0, p1, . . . , we will have by solving the equation

105. 0 = p0 + p1r + · · ·+ pn−1.r
n−1 + rn,

the value of the quantities

r1, r2, . . . , rn; r1,0, r2,0, . . . , rn,0; r1,1, r2,1, . . . , rn,1 etc. etc.,

the first of which is equal to ϕ2
(

ω
2n+1

)
. So determining this quantity, or solving the

equation R = 0 that is of degree (2n+2).n, is reduced to that of equation of degree (2n+2)
and n.

But we can again simplify the previous procedure. Indeed, having the quantities
p0, p1, . . . , we see that it suffices to know an arbitrary one of them, and also that we
can express the others rationally in that one.

Generally p, q are two symmetric rational functions of the quantities r1, r2, . . . , rn, we
may let, as we saw:
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p = ψr1; q = θr1,

ψr1 and θr1 designating two rational functions in r1 that have the property: if one
changes r1 arbitrarily into one of the other the quantities r1, r2, . . . , rn, it remains the
same.

Now suppose:

sk = (ψr1)k.θr1 + (ψr1,0)k.θr1,0 + (ψr1,1)k.θr1,1 + · · ·+ (ψr1,2n)k.θr1,2n,

I claim that sk will be able to be expressed rationally in e and c.
Indeed,

(ψr1)k.θr1 = (ψrν)k.θrν =
1
n

{
(ψr1)k.θr1 + (ψr2)k.θr2 + · · ·+ (ψrn)k.θrn

}
,

(ψr1,m)k.θr1,m = (ψrν,m)k.θrν,m =
1
n

{
(ψr1,m)k.θr1,m + (ψr2,m)k.θr2,m + · · ·+ (ψrn,m)k.θrn,m

}
.

Setting m = 0, 1, 2, . . . , 2n, and substituting in the expression of sk, we see that sk
will be a symmetric rational function in the roots r0, r1, . . . , r1,0 etc., etc. of the equation
R = 0; therefore sk can be expressed rationally in e and c.

Knowing sk, we obtain by setting k = 0, 1, 2, . . . , 2n, 2n+ 1 equations from which one
easily deduces the value of θr1 as a rational function of ψ1r. So given a function of the
form p, we can express another arbitrary function of the same form as a rational function
p. Thus as we claimed, we can express the coefficients p0, p1, . . . , pn−1 rationally using one
of them arbitrarily. Therefore in conclusion, to find the values, it suffices to solve a single
equation of degree 2n + 2, and as a consequence, to find the roots of the equation R = 0
it suffices to solve an equation of degree 2n+ 2, and 2n+ 2 equations of degree n.

21.

Now among the equations of which depend on the quantities ϕ
(

ω
2m+1

)
; ϕ
(

$i
2n+1

)
those

of degree n can be solved algebraically. The method by which we carried out the solution
is entirely similar to that due to M. Gauss for the solution of the equation

θ2n+1 − 1 = 0.

Let the equation

106. 0 = p1 + p1.r + p2.r
2 + · · ·+ pn−1.r

n−1 + rn,

be given, of which the roots are:

ϕ2

(
ω′

2n+ 1

)
, ϕ2

(
2ω′

2n+ 1

)
, . . . , ϕ2

(
nω′

2n+ 1

)
,

45



where ω′ is one of the values ω, mω + $i. Designate by α one of the primitive roots
of 2n+ 1, that is to say, a integer such that µ = 2n+ 1 is the smaller number that makes
αµ−1 divisible by 2n+1. I claim that the roots of equation (106.) can also be represented
by

107. ϕ2(ε), ϕ2(αε), ϕ2(α2ε), ϕ2(α3ε), . . . , ϕ2(αn−1.ε),

where ε = ω′

2n+1 .
Let

αm = (2n+ 1)km ± am,

where k is an integer and am a positive integer less than n+ 1. I claim that the terms
of the series

1, a1, a2, . . . , an−1

will be all different.
Indeed, if one has

am = aµ,

this results in

either αm − aµ = (2n+ 1)(km − kµ),
or αm + αµ = (2n+ 1)(km + kµ).

It is thus necessary that one of the quantities αm−αµ, αm+αµ be divisible by 2n+1; or
supposing m > µ, which is possible, it is necessary that αm−α− 1 or am−µ + 1 be divisible
by n; however that is impossible, as m− µ is less than n.

Therefore the quantities 1, a1, a2, . . . , an−1 are distinct and as a consequence coincide
with the numbers 1, 2, 3, 4, . . . , n, but in a different order, .

Thus noticing that

ϕ2{[(2n+ 1)km ± am]ε} = ϕ2(amε),

we see that the quantities (107.) are the same as these:

ϕ2(ε), ϕ2(2ε), . . . , ϕ2(nε),

that is to say, the roots of the equation (106.) QED.
What’s more, since

αn = (2n+ 1)kn − 1,

we will have
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αn+m = (2n+ 1)knαm − αm,

so

an+m = +am

and

ϕ2(αn+mε) = ϕ2(αmε).

That stated, let an arbitrary imaginary root θ of the equation

θn − 1 = 0

and

108. ψ(ε) = ϕ2(ε) + ϕ2(αε)θ + ϕ2(α2ε)θ2 + · · ·+ ϕ2(αn−1ε)θn−1.

In virtue of what we saw previously, the right hand side of this equation can be trans-
formed into a rational function of ϕ2(ε).

Let us set

109. ψ(ε) = χ
[
ϕ2(ε)

]
.

Putting αmε in place of ε in the first expression for ψ(ε), we get:

ψ(αmε) = ϕ2(αmε) + ϕ2(αm+1ε).θ + ϕ2(αm+2ε).θ2 + · · ·
+ϕ2(αn−1ε).θn−m−1 + ϕ2(αnε).θn−m + · · ·+ ϕ2(αn+m−1ε).θn−1,

but we saw that ϕ2(αn+mε) = ϕ2(αmε); therefore:

ψ(αmε) = θn−m.ϕ2(ε) + θn−m+1.ϕ2(αε) + θn−m+2.ϕ2(α2ε) + · · ·
+θn−1.ϕ2(αm−1ε) + ϕ2(αmε) + θ.ϕ2(αm+1ε) + · · ·+ θn−m−1.ϕ2(αn−1ε).

Multiplying by θm, the right hand side becomes equal to ψ(ε), thus:

110. ψ(αmε) = θ−m.ψ(ε),

or:

ψ(ε) = θm.χ
[
ϕ2(αmε)

]
,

from which raising both to the nth power, one concludes by virtue of the relation
θmn = 1:

111. [ψ(ε)]n =
{
χ
[
ϕ2(αmε)

]}n
.
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By successively setting m = 0, 1, 2, 3, . . . , n−1, n, the formula gives n equations, which,
adding them term by term, give the following:

112. n [ψ(ε)]n =
[
χ
[
ϕ2(ε)

]]n +
[
χ
[
ϕ2(αε)

]]n +
[
χ
[
ϕ2(α2ε)

]]n + · · ·+
[
χ
[
ϕ2(αn−1ε)

]]n ;

Now the right hand side of this equation is a symmetric rational function of ϕ2(ε), ϕ2(αε),
. . . , ϕ2(αn−1ε), that is, the roots of equation (106.); therefore (ψε)n can be expressed by
rational functions of p0, p1, . . . , pn−1, and consequently by a rational function in any one
of these quantities. Let ν be the value ν of ψ(ε), then we get

113. n
√
ν = ϕ2(ε) + θ.ϕ2(αε) + θ2.ϕ2(α2ε) + · · ·+ θn−1.ϕ2(αn−1ε).

That established, let θ = cos 2π
n + i sin 2π

n . The imaginary roots of the equation θn − 1
can be represented by

θ1, θ2, . . . , θn−1.

Thus by successively setting θ equal to each of the roots and designating the corre-
sponding values of ν by ν1, ν2, . . . , νn−1, we get

n
√
ν1 = ϕ2(ε) + θ.ϕ2(αε) + · · ·+ θn−1.ϕ2(αn−1ε)

n
√
ν2 = ϕ2(ε) + θ2.ϕ2(αε) + · · ·+ θ2n−2.ϕ2(αn−1ε)
· · ·
n
√
νn−1 = ϕ2(ε) + θn−1.ϕ2(αε) + · · ·+

By combining these eqautions with the following:

−pn−1 = ϕ2(ε) + ϕ2(αε) + · · ·+ ϕ2(αn−1ε),

we easily conclude:

114. φ2(αmε) = +
1
n

{
−pn−1 + θ−m. n

√
ν1 + θ−2m. n

√
ν2 + θ−5m. n

√
ν3 + · · ·+ θ−(n−1)m. n

√
νn−1

}
,

and for m = 0:

115. ϕ2(ε) =
1
n
{−pn−1 + n

√
ν1 + n

√
ν2 + · · ·+ n

√
νn−1} .

22.

All of the roots of equation (106.) are contained in formula (115.), but since there are
only n of them, it still remains to give ϕ2(ε) a form that does not contain roots to the
question. Now this is easily done as follows:
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Let

sk =
n
√
νk

( n
√
ν1)k

.

Using here ε instead of αmε, n
√
νk will become θ−km. n

√
νk, and n

√
ν1 to θ−m. n

√
ν1, so sk

becomes:

θ−km. n
√
νk(

θ−m n
√
ν1

)k =
n
√
νk(

n
√
ν1

)k .
The function sk, as can be seen, does not change value when one uses αmε instead of

ε. Now pk is a rational function of ϕ2(ε). Thus, by designating pk by λ
[
ϕ2(ε)

]
, we have

sk = λ
[
ϕ2(αmε)

]
,

whatever the integer m. One will conclude in the same way as we have found for (ψε)n,
that the value of sk is a rational function of one of the quantities p0, p1, . . . , pn−1. Knowing
sk, we get:

n
√
νk = sk ( n

√
ν1)k .

So putting ν in place of ν1, the expression for ϕ2(αmε) becomes:

116. ϕ2(αmε) =
1
n

{
−pn−1 + θ−m.ν

1
n + s2θ

−2m.ν
2
n + · · ·+ sn−1θ

−(n−1)m.ν
n−1
n

}
,

for m = 0:

117. ϕ2(ε) =
1
n

{
−pn−1 + ν

1
n + s2.ν

2
n + s3.ν

3
n + · · ·+ sn−1.ν

n−1
n

}
.

This value has only n distinct values that correspond to the n values of ν
1
n . So ulti-

mately the solution of the equation P2n+1 = 0 is reduced to one equation of degree 2n+ 2;
but this equation does not appear in general to be solvable algebraically. Nevertheless one
can solve it completely in particular cases, e.g., when e = c, e = c

√
3, e = c(2 ±

√
3), etc.

In the course of this memoir I will deal with these cases, of which the first is especially
remarkable, as much for the simplicity of the solution as for its beautiful applications in
geometry.

Indeed, among other things I arrived at this theorem:

One can divide the whole circumference of the lemniscate into m equal parts
using ruler and compass only if m is of the form 2n or 2n+1, the latter number
at the same time being prime; or if m is a product of several numbers of the
two forms.
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This theorem is, one sees, is precisely the same as that of M. Guass relative to the
circle.

§. VI.
Various expressions for the functions φ(nβ), f(nβ), F (nβ).

23.

By using the known formulas that give the values of the coefficients of an algebraic
equation as a function of the roots, one can derive various expressions for the functions
φ(nβ), f(nβ), F (nβ) from the formulas in the preceding paragraphs.

I will consider the most remarkable.
To shorten the formulas, the following notations will be useful: I will indicate:

1) By
k′∑

m=k

ψ(m) the sum, and by
k′∏

m=k

ψ(m) the product of all the quantities of the form

ψ(m) that one will obtain by giving m all integer values between k and k′, the limits k and
k′ included.

2) By
k′∑

m=k

ν′∑
µ=ν

ψ(m,µ) the sum, and by
k′∏

m=k

ν′∏
µ=ν

ψ(m,µ) the product of all the quantities

of the form ψ(m,µ) that one obtains by giving m all the integer values from k to k′, and
to µ the values from ν to ν ′, always including the limits.

According to that, it is clear that one will have:

119.
k′∑

m=k

ψ(m) = ψ(k) + ψ(k + 1) + · · ·+ ψ(k′),

120.
k′∏

m=k

ψ(m) = ψ(k) · ψ(k + 1) · · ·ψ(k′),

121.
k′∑

m=k

ν′∑
µ=ν

ψ(m,µ) =
ν′∑
µ=ν

ψ(k, µ) +
ν′∑
µ=ν

ψ(k + 1, µ) + · · ·+
ν′∑
µ=ν

ψ(k′, µ),

122.
k′∏

m=k

ν′∏
µ=ν

ψ(m,µ) =
ν′∏
µ=ν

ψ(k, µ).
ν′∏
µ=ν

ψ(k + 1, µ) · · ·
ν′∏
µ=ν

ψ(k′, µ).

That said, consider the equations
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123.



ϕ(2n+ 1)β =
P2n+1

Q2n+1
,

f(2n+ 1)β =
P ′2n+1

Q2n+1
,

F (2n+ 1)β =
P ′′2n+1

Q2n+1
.

You will see, that P2n+1 is a rational function of x of degree (2n+ 1)2 and of the form
x.ψ(x2). Similarly, P ′2n+1 and P ′′2n+1 are functions of the same form, the first in y, the
second in z. Finally Q2n+1 is a function that, expressed indistinctly in x, y, or z, will be
of degree (2n+ 1)2 − 1, and only contains even powers. So we have

P2n+1 = A.x(2n+1)2 + · · ·+B.x; P ′2n+1 = A′.y(2n+1)2 + · · ·+B′.y;
P ′′2n+1 = A′′.z(2n+1)2 + · · ·+B′′.z; Q2n+1 = C.x(2n+1)2−1 + · · ·+D;
Q2n+1 = C ′.y(2n+1)2−1 + · · ·+D′; Q2n+1 = C ′′.z(2n+1)2−1 + · · ·+D′′.

Substituting these values into (123.), we get{
A.x(2n+1)2 + · · ·+B.x

}
− ϕ(2n+ 1)β.

{
C.x(2n+1)2−1 + · · ·+D

}
,{

A′.y(2n+1)2 + · · ·+B′.y
}
− f(2n+ 1)β.

{
C ′.y(2n+1)2−1 + · · ·+D′

}
,{

A′′.z(2n+1)2 + · · ·+B′′.z
}
− F (2n+ 1)β.

{
C ′′.z(2n+1)2−1 + · · ·+D′′

}
.

In the first of these equations A is the coefficient of the first term, −ϕ(2n+ 1)β.C that
of the second, and −ϕ(2n+ 1)β.D the last term. So C

Aϕ(2n+ 1)β is equal to the sum and
±D
Aϕ(2n + 1)β is equal to the product of the roots of the equations under discussion, an

equation that is the same as this one:

124. ϕ(2n+ 1)β =
P2n+1

Q2n+1
.

Thus while noticing that A, C andD (and in general all the coefficients) are independent
of β, one sees that ϕ(2n+1)β is (up to a constant coefficient) equal to the sum and product
of all the roots of equation (124.).

In the same manner, one sees that f(2n + 1)β and F (2n + 1)β are respectively equal
to the product or to the sum of the roots of the equations

f(2n+ 1)β =
P ′2n+1

Q2n+1
, F (2n+ 1)β =

P ′′2n+1

Q2n+1
,

by taking care to multiply the result by a suitably chosen constant coefficient.
Now the roots of equation (123.) according to No. 11 are respectively:
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x = (−1)m+µ.ϕ

(
β +

m

2n+ 1
ω +

µ

2n+ 1
$i

)
,

y = (−1)m.f
(
β +

m

2n+ 1
ω +

µ

2n+ 1
$i

)
,

z = (−1)µ.F
(
β +

m

2n+ 1
ω +

µ

2n+ 1
$i

)
,

where the limits of m and µ are −n and n.
Therefore in virtue of what we have just seen, and by using the notations adopted we

will have the following formulas:

125.



ϕ(2n+ 1)β = A.
+n∑

m=−n

+n∑
µ=−n

(−1)m+µ.ϕ

(
β +

m.ω + µ$i

2n+ 1

)
,

f(2n+ 1)β = A′
+n∑

m=−n

+n∑
µ=−n

(−1)m.f
(
β +

mω + µ$i

2n+ 1

)
,

F (2n+ 1)β = A′′
+n∑

m=−n

+n∑
µ=−n

(−1)µ.F
(
β +

mω + µ$i

2n+ 1

)
;

ϕ(2n+ 1)β = B

+n∏
m=−n

+n∏
µ=−n

.ϕ

(
β +

mω + µ$i

2n+ 1

)
,

f(2n+ 1)β = B′.
+n∏

m=−n

+n∏
µ=−n

.f

(
β +

mω + µ$i

2n+ 1

)
,

F (2n+ 1)β = B′′.
+n∏

m=−n

+n∏
µ=−n

.F

(
β +

mω + µ$i

2n+ 1

)
.

To determine the constant quantities A, A′, A′′, B, B′, B′′, it will be necessary to give
β a particular value. Thus taking β = ω

2 + $
2 i in the the first three formulas, after having

divided the two sides by ϕβ, it will become, noticing that ϕ
(
ω
2 + $

2 i
)

= 1
0 :

A =
ϕ(2n+ 1)β

ϕβ

A′ =
f(2n+ 1)β

fβ
A′′ = F (2n+1)β

fβ

 for β =
ω

2
+
$

2
i.

Given β = ω
2 + $

2 i+ α, one has:
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A =
ϕ
(
(2n+ 1)α+ nω + n$i+ ω

2 + $
2 i
)

ϕ
(
α+ ω

2 + $
2 i
)

=
ϕ
(
(2n+ 1)α+ ω

2 + $
2 i
)

ϕ
(
α+ ω

2 + $
2 i
) =

ϕα

ϕ(2n+ 1)α
,

A′ =
f
(
(2n+ 1)α+ nω + n$i+ ω

2 + $
2 i
)

f
(
α+ ω

2 + $
2 i
)

= (−1)n.
f
(
(2n+ 1)α+ ω

2 + $
2 i
)

f
(
α+ ω

2 +
$

2
i
) = (−1)n.

f
(
α+ ω

2

)
f
(
(2n+ 1)α+ ω

2

) ,
A′′ =

F
(
(2n+ 1)α+ ω

2 + $
2 i
)

F
(
α+ ω

2 + $
2 i
)

= (−1)n.
F
(
(2n+ 1)α+ nω + n$i+ ω

2 + $
2 i
)

F
(
α+ ω

2 + $
2 i
) = (−1)n.

F
(
α+ $

2 i
)

F
(
(2n+ 1)α+ $

2 i
) .



for α = 0.

These expressions for A, A′, A′′ will be of the from 0
0 by setting α = 0. Thus we will

find according to the known rules:

A =
1

2n+ 1
, A′ = A′′ =

(−1)n

2n+ 1
.

According to that the three first formulas will become:

126.



ϕ(2n+ 1)β =
1

2n+ 1

+n∑
m=−n

+n∑
µ=−n

(−1)m+µ.ϕ

(
β +

mω + µ$i

2n+ 1

)
,

f(2n+ 1)β =
(−1)n

2n+ 1
.

+n∑
m=−n

+n∑
µ=−n

(−1)m.f
(
β +

mω + µ$i

2n+ 1

)
,

F (2n+ 1)β =
(−1)n

2n+ 1
.

+n∑
m=−n

+n∑
µ=−n

(−1)µ.F
(
β +

mω + µ$i

2n+ 1

)
.

To find the values of the constants B, B′, B′′, I notice that we will have:

127.
+n∏

m=−n

+n∏
µ=−n

ψ(m,µ) = ψ(0, 0).
n∏

m=1

ψ(m, 0).
n∏
µ=1

ψ(0, µ)

×
n∏

m=1

n∏
µ=1

ψ(m,µ).ψ(−m,−µ).
n∏

m=1

n∏
µ=1

ψ(m,−µ).ψ(−m,µ).

Applying this transformation to formulas (126.), dividing the first by ϕβ, the second
by fβ and the third by Fβ, at the same time making β = 0 in the first, β = ω

2 in the
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second and β = $
2 i in the third, and noticing that ϕ(2n+1)β

ϕβ = 2n + 1, for β = 0, that
f(2n+1)β

fβ = 2n+ 1, for β = ω
2 , and that F (2n+1)β

Fβ = 2n+ 1, for β = $
2 i: we find:

128.



(2n+ 1) = B.
n∏

m=1

ϕ2

(
mω

2n+ 1

)
.

n∏
µ=1

ϕ2

(
µ$i

2n+ 1

)
×

n∏
m=1

n∏
µ=1

ϕ2

(
mω + µ$i

2n+ 1

)
.ϕ2

(
mω − µ$i

2n+ 1

)
,

(2n+ 1) = B′.
n∏

m=1

f2

(
ω

2
+

mω

2n+ 1

)
.
n∏
µ=1

f2

(
ω

2
+

µ$i

2n+ 1

)
×

n∏
m=1

n∏
µ=1

f2

(
ω

2
+
mω + µ$i

2n+ 1

)
.f2

(
ω

2
+
mω − µ$i

2n+ 1

)
.

(2n+ 1) = B′′.
n∏

m=1

F 2

(
$

2
i+

mω

2n+ 1

)
.
n∏
µ=1

F 2

(
$

2
i+

µ$i

2n+ 1

)
×

n∏
m=1

n∏
µ=1

F 2

(
$

2
i+

mω + µ$i

2n+ 1

)
.F 2

(
$

2
i+

mω − µ$i
2n+ 1

)
.

From these equations one find the values of B, B′, B′′, and then substituting these into
the transformed formulas, we get:
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129.



ϕ(2n+ 1)β =

(2n+ 1)ϕβ.
n∏

m=1

ϕ
(
β + mω

2n+1

)
.ϕ
(
β − mω

2n+1

)
ϕ2
(

mω
2n+1

) .
n∏
µ=1

ϕ
(
β + µ$i

2n+1

)
.ϕ
(
β − µ$i

2n+1

)
ϕ2
(
µ$i
2n+1

)
×

n∏
m=1

n∏
µ=1

ϕ
(
β + mω+µ$i

2n+1

)
.ϕ
(
β − mω+µ$i

2n+1

)
ϕ2
(
mω+µ$i

2n+1

) .
ϕ
(
β + mω−µ$i

2n+1

)
.ϕ
(
β − mω−µ$i

2n+1

)
ϕ2
(
mω−µ$i

2n+1

) ,

f(2n+ 1)β =

(2n+ 1)fβ.
n∏

m=1

f
(
β + mω

2n+1

)
.f
(
β − mω

2n+1

)
f2
(
ω
2 + mω

2n+1

) .

n∏
µ=1

f
(
β + µ$i

2n+1

)
.f
(
β − µ$i

2n+1

)
f2
(
ω
2 + µ$i

2n+1

)
×

n∏
m=1

n∏
µ=1

f
(
β + mω+µ$i

2n+1

)
.f
(
β − mω+µ$i

2n+1

)
f2
(
ω
2 + mω+µ$i

2n+1

) .
f
(
β + mω−µ$i

2n+1

)
.f
(
β − mω−µ$i

2n+1

)
f2
(
ω
2 + mω−µ$i

2n+1

) ,

F (2n+ 1)β =

(2n+ 1)Fβ.
n∏

m=1

F
(
β + mω

2n+1

)
.F
(
β − mω

2n+1

)
F 2
(
$
2 i+ mω

2n+1

) .
n∏
µ=1

F
(
β + µ$i

2n+1

)
.F
(
β − µ$i

2n+1

)
F 2
(
$
2 i+ µ$i

2n+1

)
×

n∏
m=1

n∏
µ=1

F
(
β + mω+µ$i

2n+1

)
.F
(
β − mω+µ$i

2n+1

)
F 2
(
$
2 i+ mω+µ$i

2n+1

) .
F
(
β − mω−µ$i

2n+1

)
.F
(
β − mω−µ$i

2n+1

)
F 2
(
$
2 i+ mω−µ$i

2n+1

) .

One can give these formulas a very simple form by making use of the following formulas:

ϕ(β + α).ϕ(β − α)
ϕ2α

= −
1− ϕ2β

ϕ2α

1− ϕ2β

ϕ2(α+ω
2
+$

2
i)
,

f(β + α).f(β − α)
f2
(
ω
2 + α

) = −
1− f2β

f2(ω2 +α)

1− f2β

f2(α+ω
2
+$

2
i)
,

F 2(β + α).F (β − α)
F 2
(
$
2 i+ α

) = −
1− F 2β

F 2($2 i+α)

1− F 2β

F 2(ω2 +$
2
i+α)

,

that one can easily verify using formulas (13.), (16.), (18.).
From these formulas, it is clear that one can put equations (129.) into the form:

55



130.



ϕ(2n+ 1)β =

(2n+ 1)ϕβ.
n∏

m=1

.
1− ϕ2β

ϕ2( mω
2n+1)

1− ϕ2β

ϕ2(ω2 +$
2
i+ mω

2n+1)
.

n∏
µ=1

1− ϕ2β

ϕ2( µ$i
2n+1)

1− ϕ2β

ϕ2(ω2 +$
2
i+ µ$i

2n+1)

×
n∏

m=1

n∏
µ=1

1− ϕβ

ϕ2(mω+µ$i
2n+1 )

1− ϕ2β

ϕ2(ω2 +$
2
i+mω+µ$i

2n+1 )
.

1− ϕ2β

ϕ2(mω−µ$i2n+1 )

1− ϕ2β

ϕ2(ω2 +$
2
i+mω−µ$i

2n+1 )
,

f(2n+ 1)β =

(2n+ 1)fβ.
n∏

m=1

1− f2β

f2( mω
2n+1

+ω
2 )

1− f2β

f2(ω2 +$
2
i+ mω

2n+1)
.

n∏
µ=1

1− f2β

f2(ω2 + µ$i
2n+1)

1− f2β

f2(ω2 +$
2
i+ µ$i

2n+1)

×
n∏

m=1

n∏
µ=1

1− f2β

f2(ω2 +mω+µ$i
2n+1 )

1− f2β

f2(ω2 +$
2
i+mω+µ$i

2n+1 )
.

1− f2β

f2(ω2 +mω−µ$i
2n+1 )

1− f2β

f2(ω2 +$
2
i+mω−µ$i

2n+1 )
,

F (2n+ 1)β =

(2n+ 1)Fβ.
n∏

m=1

1− F 2β

F 2($2 i+ mω
2n+1)

1− F 2β

F 2(ω2 +$
2
i+ mω

2n+1)
.

n∏
µ=1

1− F 2β

F 2($2 i+
µ$i
2n+1)

1− F 2β

F 2(ω2 +$
2
i+ µ$i

2n+1)

×
n∏

m=1

n∏
µ=1

1− F 2β

F 2($2 i+
mω+µ$i

2n+1 )

1− F 2β

F 2(ω2 +$
2
i+mω+µ$i

2n+1 )
.

1− F 2β

F 2($2 i+
mω−µ$i

2n+1 )

1− F 2β

F 2(ω2 +$
2
i+mω−µ$i

2n+1 )
.

These formulas give, as one sees, the values of ϕ(2n+ 1)β, f(2n+ 1)β and F (2n+ 1)β,
expressed respectively as rational functions of ϕβ, fβ and Fβ, in the form of products.

We will also give the values of f(2n + 1)β, F (2n + 1)β in another form that will be
useful in what follows.

We have f2β = 1− c2ϕ2β. Hence

1− f2β

f2α
=
c2
(
ϕ2β − ϕ2α

)
f2α

=
c2

f2α
ϕ2β − c2ϕ2α

f2α

and

1− f2β

f2
(
$
2 i+ α

) =
c2
[
ϕ2β − ϕ2

(
$
2 i+ α

)]
f2
(
$
2 i+ α

) ,

now in virtue of (18.) one has:

f2
($

2
i+ α

)
=
e2 + c2

e2
.

1
f2α

;
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therefore:

1− f2β
f2α

1− f2β

f2($2 i+α)
=

1
f4α

.
e2 + c2

e2
.

1− ϕ2β
ϕ2α

1− ϕ2β

ϕ2($2 i+α)
.

One similarly finds:

1− F 2β
F 2α

1− F 2β

F 2(ω2 +α)
=

1
F 4α

.
e2 + c2

e2
.

1− ϕ2β
ϕ2α

1− ϕ2β

ϕ2(ω2 +α)
.

In virtue of these formulas, and setting β = 0 to determine the constant factor, it is
clear that one can write the expressions of f(2n+ 1)β, F (2n+ 1)β, as follows:

130′.



f(2n+ 1)β = fβ.
n∏

m=1

1− ϕ2β

ϕ2(ω2 + mω
2n+1)

1− ϕ2β

ϕ2(ω2 +$
2
i+ mω

2n+1)
.

n∏
µ=1

1− ϕ2β

ϕ2(ω2 i+
µ$i
2n+1)

1− ϕ2β

ϕ2(ω2 +$
2
i+ µ$i

2n+1)

×
n∏

m=1

n∏
µ=1

1− ϕ2β

ϕ2(ω2 +mω+µ$i
2n+1 )

1− ϕ2β

ϕ2(ω2 +$
2
i+mω+µ$i

2n+1 )
.

1− ϕ2β

ϕ2(ω2 +mω−µ$i
2n+1 )

1− ϕ2β

ϕ2(ω2 +$
2
i+mω−µ$i

2n+1 )

F (2n+ 1)β = Fβ.

n∏
m=1

1− ϕ2β

ϕ2($2 i+ mω
2n+1)

1− ϕ2β

ϕ2(ω2 +$
2
i+ mω

2n+1)
.

n∏
µ=1

1− ϕ2β

ϕ2($2 i+
µ$i
2n+1)

1− ϕ2β

ϕ2(ω2 +$
2
i+ µ$i

2n+1)

×
n∏

m=1

n∏
µ=1

1− ϕ2β

ϕ2($2 i+
mω+µ$i

2n+1 )

1− ϕ2β

ϕ2(ω2 +$
2
i+mω+µ$i

2n+1 )
.

1− ϕ2β

ϕ2($2 i+
mω−µ$i

2n+1 )

1− ϕ2β

ϕ2(ω2 +$
2
i+mω−µ$i

2n+1 )
.

In this section we have considered the functions ϕ(nβ), f(nβ), F (nβ) in the case of
odd values of n. One could find analogous expressions for the functions for even values of
n; but since there is no difficulty in that and since the formulas which we arrived at are
those that will be most useful to us later. I will not occupy myself with this [i.e., the even
case].

§. VII.
Development of the functions ϕα, fα, Fα in series and in infinite products.

24.

In the formulas in the preceding sections, by setting β = α
2n+1 one obtains expressions

of the functions ϕα, fα, Fα, that because of the indeterminate number n, can be varied
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in infinitely many ways. Among all the formulas that one thus obtains that result from
in the assumption that n is infinite are the most remarkable. In that case the functions
ϕ, f , F disappear from the values of ϕα, fα, Fα, and one obtains for these functions
algebraic expressions, but composed of infinitely many terms. To get these expressions,
put β = α

2n+1 into formulas (126.), (130.), and then find the limit of the right hand side of
these equations for ever-increasing values of n. For brevity, let ν be a quantity for which
the limit is zero for ever-increasing values of n. That said, consider successively the three
formulas in (126.).

Making β = α
2n+1 in the first of the formulas (126.), and noticing that

131.
+n∑

m=−n

+n∑
µ=−n

θ(m,µ) = θ(0, 0) +
n∑

m=1

[θ(m, 0) + θ(−m, 0)] +
n∑
µ=1

[θ(0, µ) + θ(0,−µ)]

+
n∑

m=1

n∑
µ=1

[θ(m,µ) + θ(−m,−µ) + θ(m,−µ) + θ(−m,µ)],

it is clear that one can put the formula under consideration into the form:

132. ϕα =
1

2n+ 1
.ϕ

(
α

2n+ 1

)
+

1
2n+ 1

n∑
m=1

(−1)m
{
ϕ

(
α+mω

2n+ 1

)
+ ϕ

(
α−mω
2n+ 1

)}

+
1

2n+ 1

n∑
µ=1

(−1)µ
{
ϕ

(
α+ µ$i

2n+ 1

)
+ ϕ

(
α− µ$i
2n+ 1

)}
− i

ec
.

n∑
m=1

n∑
µ=1

(−1)m+µ.ψ(n−m,n− µ)

+
i

ec

n∑
m=1

n∑
µ=1

(−1)m+µ.ψ1(n−m,n− µ),

where we have for brevity,

133.



ψ(m,µ) =
1

2n+ 1
.

 1

ϕ
(
α+(m+ 1

2
)ω+(µ+ 1

2
)$i

2n+1

) +
1

ϕ
(
α−(m+ 1

2
)ω−(µ+ 1

2
)$i

2n+1

)
 ,

ψ1(m,µ) =
1

2n+ 1
.

 1

ϕ
(
α+(m+ 1

2
)ω−(µ+ 1

2
)$i

2n+1

) +
1

ϕ
(
α−(m+ 1

2
)ω+(µ+ 1

2
)$i

2n+1

)
 .

Now notice that
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ϕ

(
α+mω

2n+ 1

)
+ ϕ

(
α−mω
2n+ 1

)
=

2ϕ
(

α
2n+1

)
.f
(

mω
2n+1

)
.F
(

mω
2n+1

)
1 + e2c2.ϕ2

(
mω

2n+1

)
.ϕ2
(

α
2n+1

) =
Am

2n+ 1
,

ϕ

(
α+ µ$i

2n+ 1

)
+ ϕ

(
α− µ$i
2n+ 1

)
=

2ϕ
(

α
2n+1

)
.f
(
µ$i
2n+1

)
.F
(
µ$i
2n+1

)
1 + e2c2.ϕ2

(
µ$i
2n+1

)
.ϕ2
(

α
2n+1

) =
Bµ

2n+ 1

where Am and Bµ are finite quantities. The part of equation (132.) up to the − sign,
will take the form:

1
2n+ 1

.ϕ

(
α

2n+ 1

)
+

1
(2n+ 1)2

.

n∑
m=1

(−1)m(Am +Bµ);

now the limit of this quantity is evidently zero; therefore, on taking the limit of formula
(132.), we have:

ϕα = − i

ec
lim .

n∑
m=1

n∑
µ=1

(−1)m+µ.ψ(n−m,n− µ)

+
i

ec
lim .

n∑
m=1

n∑
µ=1

(−1)m+µψ1(n−m,n− µ),

or:

134. ϕα = − i

ec
lim .

n−1∑
m=0

n−1∑
µ=0

(−1)m+µ.ψ(m,µ)

+
i

ec
lim .

n−1∑
m=0

n−1∑
µ=0

(−1)m+µ.ψ1(m,µ).

It suffices to consider one of these limits, because we will find the other by changing
the sign of i.

Let us find the limit of

n−1∑
m=0

n−1∑
µ=0

(−1)m+µ.ψ(m,µ).

For that, it is necessary to try to put the preceding quantity into the form
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P + ν,

where P is independent of n, and ν is a quantity that has zero as its limit; because then
the quantity P is precisely the limit under consideration.

25.

Let us initially consider the expression:

n−1∑
µ=0

(−1)µ.ψ(m,µ).

Given

135. θ(m,µ) =
2α

α2 − (mω + µ$i)2
,

and setting

136. ψ(m,µ)− θ(m,µ) =
2α

(2n+ 1)2
.Rµ,

one will have:

137.
n−1∑
µ=0

(−1)µ.ψ(m,µ)−
n−1∑
µ=0

(−1)µ.θ(m,µ) = 2α.
n−1∑
µ=0

(−1)n.
Rµ

(2n+ 1)2
.

Then I say that the right hand side of this equation is a quantity of the form ν
2n+1 .

According to (12.), (13.), we have

1
ϕ(β + ε)

+
1

ϕ(β − ε)
=
ϕ(β + ε) + ϕ(β − ε)
ϕ(β + ε).ϕ(β − ε)

=
2ϕβ.fε.F ε
ϕ2β − ϕ2ε

,

therefore setting β = α
2n+1 and ε = mω+µ$i

2n+1 = εµ
2n+1 and fε.F ε = θε, one has:

ψ(m,µ) =
1

2n+ 1
.

2ϕ
(

α
2n+1

)
.θ
(

εµ
2n+1

)
ϕ2
(

α
2n+1

)
− ϕ2

(
εµ

2n+1

) .
Now we have:

ϕ

(
α

2n+ 1

)
=

α

2n+ 1
+

Aα3

(2n+ 1)3
,

so:
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ψ(m,µ) =
θ
(

εµ
2n+1

)
ϕ2
(

α
2n+1

)
− ϕ2

(
εµ

2n+1

) .{ 2Aα3

(2n+ 1)4
+

2α
(2n+ 1)2

}
,

and consequently:

ψ(m,µ)− θ(m,µ) =
2α

(2n+ 1)2


θ
(

εµ
2n+1

)
ϕ2
(

α
2n+1

)
− ϕ2

(
εµ

2n+1

) − 1(
α

2n+1

)2
−
(

εµ
2n+1

)2


+

2Aα3

(2n+ 1)4
.

θ
(

εµ
2n+1

)
ϕ2
(

α
2n+1

)
− ϕ2

(
εµ

2n+1

) .
Thus the value of Rµ becomes:

138. Rµ =
θ
(

εµ
2n+1

)
ϕ2
(

α
2n+1

)
− ϕ2

(
εµ

2n+1

) .{1 +
Aα2

(2n+ 1)2

}
− 1(

α
2n+1

)2
−
(

εµ
2n+1

)2 .

That posed, there are two cases to consider, to know whether εµ
2n+1 has limit zero or

not.
a) If εµ

2n+1 has limit zero, we have:

ϕ2

(
εµ

2n+ 1

)
=

ε2µ
(2n+ 1)2

+
Bµ.ε

4
µ

(2n+ 1)4
,

θ

(
εµ

2n+ 1

)
=

√[
1− c2ϕ2

(
εµ

2n+ 1

)]
.

√[
1 + e2ϕ2

(
εµ

2n+ 1

)]
= 1 +

Cµε
2
µ

(2n+ 1)2
,

ϕ2

(
α

2n+ 1

)
=

α2

(2n+ 1)2
+

D.α4

(2n+ 1)4
,

where Bµ, Cµ, and D have finite limits; thus in substituting:

139. Rµ = Aα2.

1
ε2µ

+ Cµ
(2n+1)2

α2

ε2µ
− 1 + Dα4

(2n+1)2.ε2µ
−Bµ

ε2µ
(2n+1)2

+
Cµ.

α2

ε2µ
− Dα4

ε4µ
− Cµ +Bµ(

1− α2

ε2µ

)2
−
(

1− α2

ε2µ

){
Dα4

(2n+1)2.ε2µ
−Bµ.

ε2µ
(2n+1)2

} ,
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now whether εµ is finite or infinite, it is clear that the quantity always converges towards
a finite quantity for indefinitely increasing values of n. Therefore we have

140. Rµ = rµ + νµ,

where rµ is a finite quantity independent of n.
b) If εµ

2n+1 has finite quantity for a limit, it is clear that in naming this limit δµ, one
will have:

141. Rµ = − θ(δµ)
ϕ2(δµ)

+
1
δ2µ

+ ν1
µ.

That posed, consider the expression
∑n

µ=1(−1)µ. Rµ
(2n+1)2

. We have

142.
n∑
µ=1

(−1)µ.
Rµ

(2n+ 1)2
=

1
(2n+ 1)2

.{R0 −R1 +R2 −R3 + · · ·

· · ·+ (−1)ν−1.Rν−1 + (−1)ν+1[Rν+1 −Rν+1 +Rν+2 −Rν+3 + · · ·+ (−1)n−ν−1.Rn−1]}.

First suppose that εµ
2n+1 has a finite quantity for a limit, whatever the value of µ. Then

notice that

δµ+1 = δµ,

we have

Rµ −Rµ+1 = ν1
µ − ν1

µ+1,

so:

n−1∑
µ=0

(−1)µ.
Rµ

(2n+ 1)2
=

1
(2n+ 1)2

(
ν1
0 − ν1

1 + ν1
2 − ν1

3 + · · ·+ ν1
k−2 − ν1

k−1

)
+

B

(2n+ 1)2
,

where k = n or n− 1 according to whether n is even or odd.
The quantity B always has a finite quantity for a limit, namely B = 0 if n is even and

B = Rn−1 if n is odd.
Now we know that a sum such as

ν1
0 − ν1

1 + ν1
2 − · · ·+ ν1

k−2 − νk − 11,

can be put into form k.ν, ν having limit zero. So substituting:
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n−1∑
µ=0

(−1)µ.
Rµ

(2n+ 1)2
=

k.ν +B

(2n+ 1)2
;

now, k is equal to n or to n− 1, and B is finite, the limit of k.ν+B
2n+1 will be zero. Thus:

143.
n−1∑
µ=0

(−1)µ.
Rµ

(2n+ 1)2
=

ν

2n+ 1
.

Now suppose that m
2n+1 has limit zero. The εµ

2n+1 is also zero at the limit, unless at the
same time µ

2n+1 does not have a finite quantity for a limit. Given in this case ν, the integer
immediately smaller than

√
n, consider the sum

R0 −R1 +R2 −R3 + · · ·+ (−1)ν−1Rν−1.

Supposing that µ is one of the numbers 0, 1, . . . , ν, it is clear that εµ
(2n+1) = mω+µ$i

2n+1 has
zero for a limit; hence, according to what we have seen, Rµ will be a finite quantity and as
a consequence

R0 −R1 +R2 − · · ·+ (−1)ν−1Rν−1 = ν.R,

where R is also a finite quantity.
Now consider the sum

(−1)ν{Rν −Rν+1 +Rν+2 − · · ·+ (−1)n−ν−1.Rn−1}.

If εµ
2n+1 has for itslimit a quantity different than zero, we have as we will see:

Rµ −Rµ+1 = ν1
µ − ν1

µ+1;

if on the contrary εµ
2n+1 has limit zero, we have:

Rµ = νµ + ν1
µ;

now, if at the same time µ >
√
n, it is clear, that in virtue of the value of Rµ

νµ = Bµ − Cµ;

now it is clear that Bµ and Cµ both have for limits quantities independent of µ. So
naming the limits B and C, we have:

Rµ = B − C + νµ,

and consequently, also in this case,
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Rµ −Rµ+1 = νµ − νµ+1.

Therefore, as in the case where εµ
2n+1 has a limit different that zero for all the values of

µ, we show that

(−1)ν

(2n+ 1)2
{Rν −Rν−1 + · · ·+ (−1)n−ν−1Rn−1} =

ν

(2n+ 1)
.

Now by combining the equations above, one will conclude

n−1∑
µ=0

(−1)µ.
Rµ

(2n+ 1)2
=

1
(2n+ 1)2

.(νR) +
ν

2n+ 1
;

now ν
2n+1 has zero for a limit, so

n−1∑
µ=0

(−1)µ.
Rµ

(2n+ 1)2
=

ν

2n+ 1
.

Thus this formula always holds, and as a consequence of formula (137.) one deduces:

144.
n−1∑
µ=0

(−1)µψ(m,µ)−
n−1∑
µ=0

(−1)µ.θ(m,µ) =
ν

2n+ 1
.

That posed, it remains to put
∑n−1

µ=0(−1)µ.θ(m,µ) into the form P + ν
2n+1 .

Now this can be done as follows. We have:

145.



n−1∑
µ=0

(−1)µθ(m,µ) =

1
0∑

µ=0

θ(m,µ)−

1
0∑

µ=n

(−1)µθ(m,µ) and

1
0∑

µ=n

(−1)µ.θ(m,µ) = (−1)n{θ(m,n)− θ(m,n+ 1) + θ(m,n+ 2)− · · · etc.}.

Now according to a known formula we have:

θ(m,n)− θ(m,n+ 1) + θ(m,n+ 2)− · · ·

=
1
2
θ(m,n) +A

∂θ(m,n)
∂n

+B.
∂3θ(m,n)
∂3n

+ · · · ,

where A,B, . . . are numbers; now
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θ(m,n) =
2α

α2 −
[(
m+ 1

2

)
ω +

(
n+ 1

2

)
$i
]2 ,

so substituting:

θ(m,n)−θ(m,n+1)+· · · = α

α2 −
[(
m+ 1

2

)
ω +

(
n+ 1

2

)
$i
]2 +

4Aα$i.n[
α2 −

((
m+ 1

2

)
ω +

(
n+ 1

2

)
$i
)2]2 +· · ·

From there it follows that

θ(m,n)− θ(m,n+ 1) + · · · = α

$2.n2
+

ν

n2
=

ν

2n+ 1
.

Therefore by virtue of equations (145.)

n−1∑
µ=0

(−1)µθ(m,µ) =

1
0∑

µ=0

(−1)µ · θ(m,µ) +
ν

2n+ 1
.

and as a consequence

146.
n−1∑
µ=0

(−1)µψ(m,µ) =
∞∑
µ=0

(−1)µ · θ(m,µ) +
ν

2n+ 1
.

26.

Having transformed of this way the quantity
∑n−1

µ=0(−1)µ, ψ(m,µ), one deduces equation
(146.):

147.
n−1∑
m=0

n−1∑
µ=0

(−1)m+µψ(m,µ) =
n−1∑
m=0

(−1)m.%m +
n−1∑
m=0

νm
2n+ 1

,

setting

148. %m =
∞∑
µ=0

(−1)µ.θ(m,µ);

now

n−1∑
m=0

.
νm

2n+ 1
=
ν0 + ν1 + ν2 + · · ·+ νn−1

2n+ 1
=

nν

2n+ 1
=
ν

2
,

ν having limit zero. Hence equation (147.) gives, by making n infinite:
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149. lim .

n−1∑
m=0

n−1∑
µ=0

(−1)m+µ.ψ(m,µ) =
∞∑
m=0

(−1)m%m.

Similarly, if for brevity we make:

150.


θ1(m,µ) =

2α
α2 − (mω − µ$i)2

,

%′m =
∞∑
µ

(−1)µ.θ1(m,µ),

one has:

151. lim .

n−1∑
m=0

n−1∑
µ=0

(−1)m+µ.ψ1(m,µ) =
∞∑
m=0

(−1)m%′m.

Having found these two quantities that make up the expression of ϕα, we will have
upon substituting:

ϕα = − i

ec
.
∞∑
m=0

(−1)m.%m +
i

ec
.
∞∑
m=0

(−1)m.%′m =
i

ec
.
∞∑
m=0

(−1)m{%′m − %m},

or, by giving the values of %′m and %m,

152. ϕα =
i

ec

∞∑
m=0

(−1)m


∞∑
µ=0

{
2α

α2 −
[(
m+ 1

2

)
ω −

(
µ+ 1

2

)
$i
]2 − 2α

α2 −
[(
m+ 1

2

)
ω +

(
µ+ 1

2

)
$i
]2
} .

Now

2α

α2 −
[(
m+ 1

2

)
ω ±

(
µ+ 1

2

)
$i
]2 =

1
α−

(
m+ 1

2

)
ω ∓

(
µ+ 1

2

)
$i

+
1

α+
(
m+ 1

2

)
ω ±

(
µ+ 1

2

)
$i

,

so:

2α

α2 −
[(
m+ 1

2

)
ω −

(
µ+ 1

2

)
$i
]2 − 2α

α2 −
[(
m+ 1

2

)
ω +

(
µ+ 1

2

)
$i
]2

= +
(2µ+ 1)$i[

α+
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)2
$2
− (2µ+ 1)$i[

α−
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)2
$2

,

thus the expression of ϕα becomes a real form:
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153. ϕα =
1
ec
.
∞∑
m=0

(−1)m.
∞∑
µ=0

(−1)µ.

{
(2µ+ 1)$[

α−
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)2
$2
− (2µ+ 1)$[

α+
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)2
$2

}
· · ·

that is, we have:

154. ϕα =
$

ec
(δ0 − δ1 + δ2 − δ3 + · · ·+ (−1)mδm − · · ·)

− $

ec

(
δ′0 − δ′1 + δ′2 − δ′3 + · · ·+ (−1)mδ′m − · · ·

)
,

or:

155.


δm =

1[
α−

(
m+ 1

2

)
ω
]2 + $2

4

− 3[
α−

(
m+ 1

2

)
]ω
]2 + 9$2

4

+
5[

α−
(
m+ 1

2

)
ω
]2 + 25$2

4

− · · ·

δ′µ =
1[

α+
(
m+ 1

2

)
ω
]2 + $2

4

− 3[
α+

(
m+ 1

2

)
ω
]2 + 9$2

4

+
5[

α+
(
m+ 1

2

)
ω
]2 + 25$2

4

− · · ·

If we start the study of the limit of the function
∑n−1

m=0

∑n−1
µ=0(−1)m+µ.ψ(m,µ) by that

of
∑n−1

m=0(−1)mψ(m,µ) instead of that of
∑n−1

µ=0(−1)µψ(m,µ), as we have done, one finds
instead of the formula (153.) the following:

156. ϕα =

1
ec

∞∑
µ=0

.(−1)µ
∞∑
m=0

(−1)m.

{
(2µ+ 1)$[

α−
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)2
$2
− (2µ+ 1)$[

α+
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)2
$2

}
,

that is:

157. ϕα =
$

ec
(ε0 − 3ε1 + 5ε2 − 7ε3 + · · ·+ (−1)µ.(2µ+ 1)εµ − · · ·)

− $

ec

(
ε′0 − 3ε′1 + 5ε′2 − 7ε′3 + · · ·+ (−1)µ.(2µ+ 1)ε′µ − · · ·

)
,

where

158.


εµ =

1(
α− ω

2

)2 +
(
µ+ 1

2

)2
$2
− 1(

α− 3ω
2

)2 +
(
µ+ 1

2

)2
$2

+
1(

α− 5ω
2

)2 +
(
µ+ 1

2

)2
$2
− · · ·

ε′µ =
1(

α+ ω
2

)2 +
(
µ+ 1

2

)2
$2
− 1(

α+ 3ω
2

)2 +
(
µ+ 1

2

)2
$2

+
1(

α+ 5ω
2

)2 +
(
µ+ 1

2

)2
$2
− · · ·
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27.

Now to find the expression of fα with means of the second formula in (126.). Setting
β = α

2n+1 there and noticing that then the limit of the quantities contained in the first two
lines becomes equal to zero, we have:

159. fα = lim .(−1)n
n∑

m=1

n∑
µ=1

(−1)m.ψ(n−m,n− µ)

+ lim .(−1)n
n∑

m=1

n∑
µ=1

(−1)m.ψ1(n−m,n− µ),

where for brevity we define:

ψ(n−m,n− µ) =
1

2n+ 1

{
f

(
α+mω + µ$i

2n+ 1

)
+ f

(
α−mω − µ$i

2n+ 1

)}
,

ψ1(n−m,n− µ) =
1

2n+ 1

{
f

(
α+mω − µ$i

2n+ 1

)
+ f

(
α−mω + µ$i

2n+ 1

)}
.

Now we have:

f(β − ε) + f(β − ε) =
2fβ.fε

1 + e2c2ϕ2ε.ϕ2β
=

fε

e2c2ϕ2ε
.

fβ

ϕ2β + 1
e2c2ϕ2ε

.

Given

ε =
mω + µ$i

2n+ 1
,

we will have:

1
ϕε

= −iec.ϕ
(ω

2
+
$

2
− ε
)

= −iec.ϕ

((
n−m+ 1

2

)
ω +

(
n− µ+ 1

2

)
$i

2n+ 1

)
,

fε

ϕε
= −

i
√

(e2 + c2)
F
(
ε− $

2 i
) = −i

√
(e2 + c2).

c√
(e2 + c2)

.F
(
ε− ω

2
− $

2
i
)

= −ci.F.

((
n−m+ 1

2

)
ω +

(
n− µ+ 1

2

)
$i

2n+ 1

)
.

Therefore we have, by substituting and putting m and µ respectively instead of n−m
and n− µ:

68



ψ(m,µ) =
1
e
.

2ϕ
(

(m+ 1
2)ω+(µ+ 1

2)$i
2n+1

)
.F

(
(m+ 1

2)ω+(µ+ 1
2)$i

2n+1

)
(2n+ 1)

[
ϕ2
(

α
2n+1

)
− ϕ2

(
(m+ 1

2)ω+(µ+ 1
2)$i

2n+1

)]
We get the value of ψ1(m,µ) just by changing the sign of i.
Now setting

θ(m,µ) =
(2m+ 1)ω + (2µ+ 1)$i

α2 −
[(
m+ 1

2

)
ω +

(
µ+ 1

2

)
$i
]2

and

θ1(m,µ) =
(2m+ 1)ω − (2µ+ 1)$i

α2 −
[(
m+ 1

2

)
ω −

(
µ+ 1

2

)
$i
]2 ,

and then finding the limit of the function

n−1∑
m=0

n−1∑
µ=0

(−1)m.ψ(m,µ),

in the same manner as before, we find:

lim .
n−1∑
m=0

n−1∑
µ=0

(−1)m.ψ(m,µ) =
1
e
.
∞∑
µ=0

{ ∞∑
m=0

(−1)m.θ(m,µ)

}
and

lim .
n−1∑
m=0

n−1∑
µ=0

(−1)m.ψ1(m,µ) =
1
e
.
∞∑
µ=0

{ ∞∑
m=0

(−1)m.θ1(m,µ)

}
;

so by substituting in (159.), and giving the values of θ(m,µ) and θ1(m,µ), we have:

160. fα =

1
e
.

∞∑
µ=0

∞∑
m=0

(−1)m
{

(2m+ 1)ω + (2µ+ 1)$i

α2 −
[(
m+ 1

2

)
ω +

(
µ+ 1

2

)
$i
]2 +

(2m+ 1)ω − (2µ+ 1)$i

α2 −
[(
m+ 1

2

)
ω −

(
µ+ 1

2

)
$i
]2
}
.

The quantity contained by the brace-brackets can also be put into the form:

2
[
α−

(
m+ 1

2

)
ω
][

α−
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)2
$2
−

2
[
α+

(
m+ 1

2

)
ω
][

α+
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)
$2

,
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so also

161. fα =

1
e
.
∞∑
µ=0

{ ∞∑
m=0

(−1)m.
2
[
α−

(
m+ 1

2

)
ω
][

α−
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)
ω2
−
∞∑
m=0

(−1)m
2
[
α+

(
m+ 1

2

)
ω
][

α+
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)2
$2

}
.

In the same manner one will have:

162. F (α) =

1
e
.
∞∑
m=0


∞∑
µ=0

(−1)µ
(2µ+ 1)$[

α+
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)
$2

+
∞∑
µ=0

.
(2µ+ 1)$[

α+
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)
$2

 .

28.

Let us come now to formulas (130.). To find the value of the second, after having set
β = α

2n+1 , and supposing n is infinite, we go initially to find the limit of the following
expression:

163. t =
n∏

m=1

n∏
µ=1


1− ϕ2( α

2n+1)
ϕ2(mω+µ$i+k

2n+1 )

1− ϕ2( α
2n+1)

ϕ2(mω+µ$i+l
2n+1 )

 ,

where k and l are two quantities independent of n,m, µ.
Taking the logarithm and putting for short:

164. ψ(m,µ) = log


1− ϕ2( α

2n+1)
ϕ2(mω+µ$i+k

2n+1 )

1− ϕ2( α
2n+1)

ϕ2(mω+µ$i+l
2n+1 )

 ,

we have:

165. log t =
n∑

m=1

n∑
µ=1

ψ(m,µ).

Initially consider the expression:
∑n

µ=1 ψ(m,µ). Given

166. θ(m,µ) = log

1− α2

(mω+µ$i+k)2

1− α2

(mω+µ$i+l)2

 ,
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we have:

ψ(m,µ)− θ(m,µ) = log


1− ϕ2( α

2n+1)
ϕ2(mω+µ$i+k

2n+1 )

1− α2

(mω+µ$i+k)2

.
1− α2

(mω+µ$i+l)2

1− ϕ2( α
2n+1)

ϕ2(mω+µ$i+l
2n+1 )

 .

That posed, I say the right hand side of that equation is, for all values of m and µ, of
the form:

ψ(m,µ)− θ(m,µ) =
ν

(2n+ 1)2
.

To show that, it is necessary to distinguish two cases, if the limit of mω+µ$i
2n+1 is a quantity

different from zero or if it is equal to zero.
a) In the first case under consideration, naming the limit a, one will have:

ϕ2

(
mω + µ$i+ k

2n+ 1

)
= ϕ2a+ ν,

ϕ2

(
mω + µ$i+ l

2n+ 1

)
= ϕ2a+ ν ′,

ϕ2

(
α

2n+ 1

)
=

α2

(2n+ 1)2
+

ν ′

(2n+ 1)2
,

so:

1−
ϕ2
(

α
2n+1

)
ϕ2
(
mω+µ$i+k

2n+1

) = 1− α2

(2n+ 1)2ϕ2a
+

ν

(2n+ 1)2
,

1−
ϕ2
(

α
2n+1

)
ϕ2
(
mω+µ$i+l

2n+1

) = 1− α2

(2n+ 1)2.ϕ2a
+

ν ′

(2n+ 1)2
.

Similarly

1− α2

(mω + µ$i+ k)2
= 1− α2

(2n+ 1)2
{
mω+µ$i+k

(2n+1)

} = 1− α2

(2n+ 1)2a2
+

ν

(2n+ 1)2
,

1− α2

(mω + µ$i+ l)2
= 1− α2

(2n+ 1)2a2
+

ν ′

(2n+ 1)2
.

By substituting these values, the expression of ψ(m,µ)− θ(m,µ) takes the form:
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ψ(m,µ)− θ(m,µ) = log

1− ν
(2n+1)2

1− ν′

(2n+1)2

.
1− ν1

(2n+1)2

1− ν′1
(2n+1)2

 ,

the quantities ν, ν ′, ν1, ν
′
1 all having limit zero.

We thus have:

log
(

1− ν

(2n+ 1)2

)
=

ν

(2n+ 1)2
etc.,

and consequently:

ψ(m,µ)− θ(m,µ) =
ν

(2n+ 1)2
.

b) If the limit of the quantity mω+µ$i
2n+1 is equal to zero, one will have:

ϕ2

(
mω + µ$i+ k

2n+ 1

)
=

(mω + µ$i+ k)2

(2n+ 1)2
+A.

(mω + µ$i+ k)4

(2n+ 1)4
+ · · · ,

ϕ2

(
α

2n+ 1

)
=

α2

(2n+ 1)2
+A′.

α4

(2n+ 1)4
+ · · · ,

so:

1−
ϕ2
(

α
2n+1

)
ϕ2
(
mω+µ$i+k

2n+1

) = 1−
α2 +A′. α4

(2n+1)4
+ · · ·

(mω + µ$i+ k)2 +A. (mω+µ$i+k)4

(2n+1)4

.

Now if mω + µ$i is not indefinitely increasing with n, we have:

1−
ϕ2
(

α
2n+1

)
ϕ2
(
mω+[µ]$i+k

2n+1

) = 1− α2

(mω + µ$i+ k)2
+

B

(2n+ 1)2
,

similarly:

1−
ϕ2
(

α
2n+1

)
ϕ2
(
mω+µ$i+l

2n+1

) = 1− α2

(mω + µ$i+ l)2
+

C

(2n+ 1)2
,

so in this case:

ψ(m,µ)− θ(m,µ) = log

{
1− B′

(2n+1)2

1− C′

(2n+1)2

}
,

72



B′ and C ′ having finite limits, or:

ψ(m,µ)− θ(m,µ) =
D

(2n+ 1)2
,

the limit of D also being a finite quantity.
If on the contrary the quantity mω + µ$i increases indefinitely with n, one has:

1− ϕ2( α
2n+1)

ϕ2(mω+µ$i+k
2n+1 )

1− α2

(mω+µ$i+k)2

= 1 +
α2

(2n+ 1)2
.

A−A
′ α2

(mω+µ$i+k)2

1 +A
(
mω+µ$i+k

2n+1

)


× 1
1− α2

(mω+µ$i+k)2

;

where the quantities 1
mω+µ$i+k , mω+µ$i+k

2n+1 have limit zero; thus the preceding quantity
is of the form:

1 +
α2

(2n+ 1)2
.A′′,

A′′ having a finite quantity for a limit. By changing k to l and designating the corre-
sponding value of A′′ by A′′1, the value of ψ(m,µ)− θ(m,µ) becomes:

ψ(m,µ)− θ(m,µ) = log

1 + α2

(2n+1)2
A′′

1 + α2

(2n+1)2
A′′1

 =
α2 (A′′ −A′′1)

(2n+ 1)2
+

ν

(2n+ 1)2
.

Now the limit of A′′ is the same as that of A; now it is clear that this last limit is
independent of k,m, µ (indeed, it is equal to the coefficient of α4 in the development of
ϕ2α). Therefore we have:

A′′ = M + ν,

and by changing k to l:

A′′1 = M + ν ′,

from where A′′ −A′′1 = ν − ν ′ = ν. Hence A′′−A′′1 has limit zero, and as a consequence
we have:

ψ(m,µ)− θ(m,µ) =
ν

(2n+ 1)2
.

Hence we have demonstrated, that while taking
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167. ψ(m,µ)− θ(m,µ) =
Am,µ

(2n+ 1)2
,

the limit of Am,µ will be always be equal to zero as mω + µ$i increases indefinitely
with n, and that it will be equal to a finite quantity in the contrary case.

29.

That posed, consider the quantity

n∑
µ=1

ψ(m,µ).

By substituting the value of ψ(m,µ), it becomes:

168.
n∑
µ=1

ψ(m,µ) =
n∑
µ=1

θ(m,µ) +
1

(2n+ 1)2
.
n∑
µ=1

(Am,µ).

Given the greatest integer ν less than
√
n, we can make:

n∑
µ=1

Am,µ = Am,1 +Am,2 + · · ·+Am,ν

+ Am,ν+1 +Am,ν+2 + · · ·+Am,n.

Now according to the nature of the quantities Am,µ, the sum contained in the first line
will be equal to ν.Am, and the second equal to A′m(n−ν−1), where Am is a finite quantity
and A′m a quantity that has limit zero. Therefore:

n∑
µ=n

Am,µ = ν.Am + (n− ν)A′m = (2n+ 1).Bm,

where

Bm =
ν

2n+ 1
Am +

n− ν − 1
2n+ 1

A′m.

Thus the quantity Bm has limit zero, noticing that ν is not larger than
√
n.

From there, the expression of
n∑
µ=1

ψ(m,µ) changes into:

169.
n∑
µ=1

ψ(m,µ) =
n∑
µ=1

θ(m,µ) +
Bm

2n+ 1
.
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To get the limit of
∑n

µ=1 θ(m,µ), I write

n∑
µ=1

θ(m,µ) =
∞∑
µ=1

θ(m,µ)−
∞∑

µ=n+1

θ(m,µ) =
∞∑
µ=1

θ(m,µ)−
∞∑
µ=1

θ(m,µ+ n).

Now one can find the value of
∑∞

µ=1 θ(m,µ+ n) as follows.
One has:

θ(m,µ+ n) = log

1− α2

[mω+(µ+n)$i+k]2

1− α2

[mω+(µ+n)$i+l]2


= α2

{
1

[mω + (µ+ n)$i+ l]2
− 1
mω + (µ+ n)$i+ k]2

}
− 1

2
α2

{
1

[mω + (µ+ n)$i+ l]2
− 1

[mω + (µ+ n)$i+ k]2

}
+ etc.

From which one deduces:

µ∑
µ=1

θ(m,µ+ n) =
α2

n
.
∑ 1

n
.θ
(µ
n

)
− α4

2n3
.
∑ 1

n
.θ1

(µ
n

)
+ · · · ,

where

θ
(µ
n

)
=

1(
mω+l
n +$i+ µ

n$i
)2 − 1(

mω+k
n +$i+ µ

n$i
)2 ,

θ1

(µ
n

)
=

1(
mω+l
n +$i+ µ

n$i
)4 − 1(

mω+k
n +$i+ µ

n$i
)4 ,

etc.

However it is known that the limit of
∑µ

µ=1
1
nθ
(µ
n

)
is equal to

∫ x
0 θ(x)∂x, thus

µ∑
µ=1

1
n
θ
(µ
n

)
=
∫ x

0
θ(x)∂x+ ν

µ∑
µ=1

1
n
θ1

(µ
n

)
=
∫ x

0
θ1(x)∂x+ ν1,

and as a consequence on substituting
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µ∑
µ=1

θ(m,µ+ n) =
α2

n

∫ x

0
θ(x)∂x+

α4

2n3

∫ x

0
θ1(x)∂x+ · · ·+ να2

n
+
ν1α

4

2n3
+ · · · ;

now

θ(x) =
1(

mω+l
n +$i+ x$i

)2 − 1(
mω+k
n +$i+ x$i

)2
etc.

thus we have

∫ x

0
θ(x)∂x =

1
$i

.

{
1(

mω+k
n +$i+ x$i

) − 1(
mω+l
n +$i+ x$i

)}

− 1
$i

.

{
1(

mω+k
n +$i

) − 1(
mω+l
n +$i

)}

=
1
$i

.
k − l
n

.
1(

mω+l
n +$i+ x$i

) (
mω+k
n +$i+ x$i

)
− 1

$i
.
k − l
n

1(
mω+l
n +$i

) (
mω+k
n +$i

) .
The limit of this expression for

∫ x
0 θ(x)∂x is zero for an arbitrary value of x. Similarly

one finds that the limit of
∑x

0 θ1∂x is zero. Hence:

µ∑
µ=1

θ(m,µ+ n) =
α2

n
ν − α4

2n3
.ν ′ +

α6

3n5
.ν ′′ − · · ·

=
α2

2n+ 1
.

{
ν − α2

2n2
ν ′ +

a4

3n4
ν ′′ − · · ·

}
2n+ 1
n

=
ν

2n+ 1
,

so by also making µ =∞:

∞∑
µ=1

θ(m,µ+ n) =
ν

2n+ 1
,

from which:
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n∑
µ=1

ψ(m,µ+ n) =
∞∑
µ=1

θ(m,µ)− ν

2n+ 1
, and

170.
n∑
µ=1

ψ(m,µ) =
∞∑
µ=1

θ(m,µ) +
νm

2n+ 1
,

νm having limit zero. From there we deduce that

n∑
m=1

n∑
µ=1

ψ(m,µ) =
n∑

m=1


∞∑
µ=1

θ(m,µ)

+
n∑

m=1

νm
2n+ 1

.

By taking the limit of the both sides and noticing that

n∑
m=1

ν

2n+ 1
=
ν1 + ν2 + · · ·+ νm

2n+ 1
= ν,

we have:

171. lim .
n∑

m=1

n∑
µ=1

ψ(m,µ) =
∞∑
m=1


∞∑
µ=1

θ(m,µ)

 .

By giving the values of ψ(m,µ) and θ(m,µ), and passing from the logarithms to the
numbers, we conclude:

172. lim .
n∏

m=1

n∏
µ=1


1− ϕ2( α

2n+1)
ϕ2(mω+µ$i+k

2n+1 )

1− ϕ2( α
2n+1)

ϕ2(mω+µ$i+l
2n+1 )

 =
∞∏
m=1


∞∏
µ=1

1− α2

(mω+µ$i+k)2

1− α2

(mω+µ$i+l)2

 .

By an analysis entirely similar to the preceding, but simpler, we likewise find:

173. lim .

n∏
m=1


1− ϕ2( α

2n+1)
ϕ2(mω+k

2n+1 )

1− ϕ2( α
2n+1)

ϕ2(mω+l
2n+1 )

 =
∞∏
m=1

1− α2

(mω+k)2

1− α2

(mω+l)2

 ,

174. lim .

n∏
µ=1


1− ϕ2( α

2n+1)
ϕ2(µ$i+k2n+1 )

1− ϕ2( α
2n+1)

ϕ2(µ$i+k2n+1 )

 =
∞∏
µ=1

1− α2

(µ$i+k)2

1− α2

(µ$i+l)2

 .
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30.

Now nothing is easier than to find the values of ϕα, fα, Fα.
To begin, consider the first formula (130.). We have:

e2c2ϕ2

(
mω + µ$i

2n+ 1

)
= − 1

ϕ2
(
mω+µ$i

2n+1 − ω
2 −

$
2 i
)

= − 1

ϕ2

(
(n−m+ 1

2)ω+(n−µ+ 1
2)$i

2n+1

) ,
thus:

n∏
m=1

µ∏
1


1− ϕ2β

ϕ2(mω+µ$i
2n+1 )

1 + e2c2.ϕ2
(
mω+µ$i

2n+1

)
ϕ2β

 =

n∏
m=1

µ∏
1

1− ϕ2β

ϕ2
(
mω+µ$i

2n+1

)


n∏
m=1

µ∏
1

.

1− ϕ2β

ϕ2

(
(n−m+ 1

2)ω+(n−µ+ 1
2)$i

2n+1

)


=
n∏

m=1

µ∏
µ=1


1− ϕ2β

ϕ2(mω+µ$i
2n+1 )

1− ϕ2β

ϕ2

„
(mω+µ$i+ω

2 +$
2 i)

2n+1

«


That established, if we set β = α

2n+1 and suppose that n is infinite, we get, using

formulas (172.), (173.), (174.), and noting that α is the limit of (2n + 1)ϕ
(

α
2n+1

)
and

equal to α[sic.]:

175. ϕα = α
∞∏
m=1

{
1− α2

(mω)2

}
.

∞∏
µ=1

{
1 +

α2

(µ$)2

}

×
∞∏
m=1


∞∏
µ=1

 1− α2

(mω+µ$i)2

1− α2

[(m− 1
2)ω+(µ− 1

2)$i]2

 .
∞∏
µ=1

 1− α2

(mω−µ$i)2

1− α2

[(m− 1
2)ω−(µ− 1

2)$i]2


 .

The two formulas (130) will give in the same manner, by setting β = α
2n+1 and noticing

that f(0) = 1, F (0) = 1:
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176. fα =
∞∏
m=1


∞∏
µ=1

 1− α2

[(m− 1
2)ω+µ$i]2

1− α2

[(m− 1
2)ω+(µ− 1

2)$i]2


 1− α2

[(m− 1
2)ω−µ$i]2

1− α2

[(m− 1
2)ω−(µ− 1

2)$i]2




×
∞∏
µ=0

{
1− α2(

m+ 1
2

)
ω2

}
,

177. Fα =
∞∏
µ=0

{
1 +

α2(
µ+ 1

2

)
$2

}
.
∞∏
m=1


∞∏
µ=1

 1− α2

[mω+(µ− 1
2)$i]2

1− α2

[(m− 1
2)ω+(µ− 1

2)$i]2


 1− α2

[mω+(µ− 1
2)$i]2

1− α2

[(m− 1
2)ω+(µ− 1

2)$i]2


 .

One can also give a real form to the preceding expressions as follows:

178. ϕα = α.

∞∏
µ=1

(
1 +

α2

µ2$2

)
.

∞∏
m=1

(
1− α2

m2ω2

)

×
∞∏
m=1

∞∏
µ=1

1 + (α+mω)2

µ2$2

1 + [α+(m− 1
2)ω]2

µ2$2

.
1 + (α−mω)2

µ2$2

1 + [α−(m− 1
2)ω]2

µ2$2

.

1 + (m− 1
2)2

ω2

µ2$2

1 + m2ω2

µ2$2


2

,

179. fα =
∞∏
m=1

(
1− α2(

m− 1
2

)2
ω2

)

×
∞∏
m=1

∞∏
µ=1

1 + [α+(m− 1
2)]2

µ2$2

1 + [α+(m− 1
2)ω]2

(µ− 1
2)2

$2

.
1 + [α−(m− 1

2)ω]2
µ2$2

1 + [α−(m− 1
2)ω]2

(µ− 1
2)2

$2

.

1 + (m− 1
2)2

ω2

(µ− 1
2)2

$2

1 + (m− 1
2)2

ω2

µ2$2


2

,

180. Fα =
∞∏
µ=1

(
1 +

α2(
µ+ 1

2

)2
$2

)

×
∞∏
m=1

∞∏
µ=1

1 + (α+mω)2

(µ− 1
2)2

$2

1 + [α+(m− 1
2)ω]2

(µ− 1
2)2

$2

.

1 + (α−mω)2

(µ− 1
2)2

$2

1 + [α−(m− 1
2)ω]2

(µ− 1
2)2

$2

.

1 + (m− 1
2)2

ω2

(µ− 1
2)2

$2

1 + m2ω2

(µ− 1
2)2

$2


2

.
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These transformations easily take place by means of the formula:

(
1− α2

(a+ bi)2

)(
1− α2

(a− bi)2

)
=
(

1 +
α

a+ bi

)(
1 +

α

a− bi

)(
1− α

a+ bi

)(
1− α

a− bi

)
=

(α+ a)2 + b2

a2 + b2
.
(α− a)2 + b2

a2 + b2
=
(

1 +
(α+ a)2

b2

)(
1 +

(α− a)2

b2

)
.

1(
1 + a2

b2

)2 .

31.

In what preceded we arrived at two types of expressions for the functions ϕα, fα, Fα:
those that give the decomposition of the functions as partial fractions, all in the form of
double infinite series, the others gave the same functions decomposed into a number of
infinite factors, each one in its turn composed of infinitely many factors.

Now we can greatly simplify the proceeding formulas by means of exponential and
circular functions. This is what we will see by what follows:

First consider equations (178.), (179.), (180.). In virtue of known formulas, we have:

sin y
y

=
∞∏
µ=1

(
1− y2

µ2π2

)
; cos y =

∞∏
µ=1

(
1− y2(

µ− 1
2

)2
π2

)
;

so:

∞∏
µ=1

(
1− z2

µ2π2

)
(

1− y2

(µ− 1
2)π2

) =
sin z
z cos y

;
∞∏
µ=1

1− z2

(µ− 1
2)π2

1− y2

(µ− 1
2)π2

 =
cos z
cos y

.

In virtue of these formulas it is clear that the expressions of ϕα, fα, Fα can be put
into the form:

ϕα =
$

π
.
sin
(
α π
$ i
)

i
.

∞∏
m=1

(
1− α2

m2ω2

)

×
∞∏
m=1

(
sin(α+mω) π$ i. sin(α−mω) π$ i. cos2

(
m− 1

2

)
ω π
$ i

cos
[
α+

(
m− 1

2

)
ω
]
π
$ i. cos

[
α−

(
m− 1

2

)
ω
]
π
$ i. sin

2mω π
$ i
.

(
mω π

$ i
)2

(α+mω)(α−mω).π2

ω2 i2

)
,

fα =
∞∏
m=1

(
1− α2(

m− 1
2

)2
ω2

)

×
∞∏
m=1

(
tan

[
α+

(
m− 1

2

)
ω

]
π

$
i. tan

[
α−

(
m− 1

2

)
ω

]
π

$
i. cot2

(
m− 1

2

)
ω
π

$
i

(
m− 1

2

)2
ω2

α2 −
(
m− 1

2

)2
ω2

)
,
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Fα = cos
(
α
π

$
i
)
.
∞∏
m=1

(
cos(α+mω) π$ i. cos(α−mω) π$ i. cos2

(
m− 1

2

)
ω π
$ i

cos
[
α+

(
m− 1

2

)
ω
]
π
$ i. cos

[
α−

(
m− 1

2

)
ω
]
π
$ i. cos2mω. π$ i

)
.

One will find the real expressions by substituting exponential functions for the circular
functions in the expressions.

We have:

sin(a− b). sin(a+ b) = sin2 a− sin2 b,

cos(a+ b). cos(a− b) = cos2 a− sin2 b,

so:

sin(α+mω) π$ i. sin(α−mω) π$ i
sin2mω π

$ i
= −

{
1−

sin2 α π
$ i

sin2mω π
$ i

}
,

cos
[
α+

(
m− 1

2

)
ω
]
π
$ i. cos

[
α−

(
m− 1

2

)
ω
]
π
$ i

cos2
(
m− 1

2

)
ω π
$ i

= 1−
sin2 α π

$ i

cos2
(
m− 1

2

)
ω π
$ i
,

tan
[
α+

(
m− 1

2

)
ω

]
π

$
i. tan

[
α−

(
m− 1

2

)
ω

]
π

$
i. cot2

(
m− 1

2

)
ω
π

$
i

= −
1− sin2 α π

$
i

sin2(m− 1
2)ω π

$
i

1− sin2 α π
$
i

cos2(m− 1
2)ω π

$
i

From this and noticing that

m2ω2

α2 −m2ω2
= − 1

1− α2

m2ω2

and(
m− 1

2

)2
ω2

α2 −
(
m− 1

2

)2
ω2

= − 1
1− α2

(m− 1
2)ω2

,

it is clear that we have:

181. ϕα =
π

$
.
sin
(
α
$πi

)
i

.
∞∏
m=1

.
1− sin2 α π

$
i

sin2mω π
$
i

1− sin2 α π
$
i

cos2(m− 1
2)ω π

$
i

,
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182. fα =
∞∏
m=0

.
1− sin2 α π

$
i

sin2(m+ 1
2)ω π

$
i

1− sin2 α π
$
i

cos2(m+ 1
2)ω π

$
i

,

183. Fα = cos
( α
$
πi
)
.
∞∏
m=1

.
1− sin2 α

$
πi

cos2m ω
$
πi

1− sin2 α
$
πi

cos2(m− 1
2) ω$πi

.

Substituting for the cosines and sines of imaginary arcs their values in exponential
quantitites, the formulas become:

184. ϕα =
1
2
.
$

π

(
h
α
$
π − h−

α
$
π
)
.

∞∏
m=1

1−
(

h
α
$π−h−

α
$π

hm
ω
$π−h−m

ω
$π

)2

1 +
(

h
α
$π−h−

α
$π

h(m−
1
2) ω$π

+h
−(m− 1

2) ω$π

)2 ,

185. fα =
∞∏
m=0

.

1−
(

h
α
$π−h−

α
$π

h(m+1
2) ω$π−h−(m+1

2) ω$π

)2

1 +
(

h
α
$π−h−

α
$π

h(m+1
2) ω$π

+h
−(m+1

2) ω$π

)2 ,

186. Fα =
1
2

(
e
α
$
π + e−

α
$
π
)
.
∞∏
m=1

1 +
(

h
α
$π−h−

α
$π

hm
ω
$π+h−m

ω
$π

)2

1 +
(

h
α
$π−h−

α
$π

h(m−
1
2) ω$π

+h
−(m− 1

2) ω$π

)2

where h is the number 2.1718218 . . ..7

We can also transform this formula in the following manner.
If one replaces α by αi, we will have the values of ϕ(αi), f(αi), F (αi). By now changing

c to e and e to c, the quantities:

ω; $; ϕ(αi); f(αi); F (αi)

will resepectivley change to:

$; ω; iϕα; Fα; fα,

so the preceding formulas give:
7There is a typo here. The number we now call e is equal to 2.71828128 . . ..
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187. ϕα =
ω

π
. sin

απ

ω
.
∞∏
m=1

.

1 +
4 sin2(απω )“

h
m$π
ω −h−

m$π
ω

”2

1− 4 sin2(απω )„
h

(2m−1)$π
2ω +h−

(2m−1)$π
2ω

«2

,

188. Fα =
∞∏
m=0

1 +
4 sin2(απω )„

h
(2m+1)$π

2ω −h−
(2m+1)$π

2ω

«2

1− 4 sin2(απω )„
h

(2m+1)$π
2ω +h−

(2m+1)$π
2ω

«2

189. fα = cos
(απ
ω

)
.
∞∏
m=1

1− 4 sin2(απω )“
h
m$π
ω +h−

m$π
ω

”2

1− 4 sin2(απω )„
h

(2m+1)$π
2ω +h−

(2m+1)$π
2ω

«2

.

32.

Now consider formulas (160.), (161.), (162.).
We have:

∞∑
µ=0

(−1)µ.
(2µ+ 1)π

y2 +
(
µ+ 1

2

)2
π2

=
2

hy + h−y
,

so setting:

y =
[
α±

(
m+

1
2

)
ω

]
π

$
:

∞∑
µ=0

(−1)µ.
(2µ+ 1)$[

α±
(
m+ 1

2

)
ω
]2 +

(
µ+ 1

2

)2
$2

=
2π
$
.

1

h[α±(m+ 1
2)ω] π$ + h−[α±(m+ 1

2)ω] π$
.

In virtue of this formula it is easy to see that expressions (153.), (162.) of ϕα and Fα
become:

190. ϕα =

2
ec

π

$

∞∑
m=0

(−1)m.
{

1

h[α−(m+ 1
2)ω] π$ + h−[α−(m− 1

2)ω] π$
− 1

h[α+(m+ 1
2)ω] π$ + h−[α+(m+ 1

2)ω] π$

}
,
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191. Fα =
2
c
.
π

$
.

∞∑
m=0

{
1

h[α−(m+ 1
2)ω] π$ + h−[α−(m+ 1

2)ω] πω
+

1

h[α+(m+ 1
2)ω] π$ + h−[α+(m+ 1

2)ω] π$

}
.

The preceding expression of ϕα, Fα can also be put in many other forms: I will recall
the most remarkable. Joining initially the terms of the right side, one finds:

192. ϕα =
2
ec
.
π

$
.

∞∑
m=0

(−1)m.


(
h
απ
$ − h−

απ
$

)(
h(m+ 1

2)ωπ$ − h−(m+ 1
2)ωπ$

)
h

2απ
$ + h−

2απ
$ + h(2m+1)ωπ

$ + h−(2m+1)ωπ
$

 ,

193. Fα =
2
c
.
π

$
.
∞∑
m=0

.


(
h
απ
$ + h−

απ
$

)(
h(m+ 1

2)ωπ$ + h−(m+ 1
2)ωπ$

)
h

2απ
$ + h−

2απ
$ + h(2m+1)ωπ

$ + h−(2m+1)ωπ
$

 .

If for brevity one supposes:

194. h
απ
$ = ε and h

ωπ
$ = r2,

these formulas, by developing the right hand side, become:

195. ϕα =

2
ec
.
π

$

(
ε− 1

ε

)
.

{
r − 1

r

r2 + ε2 + 1
ε3

+ 1
r2

−
r3 − 1

r2

r6 + ε2 + 1
ε2

+ 1
r6

+
r5 − 1

r5

r10 + ε2 + 1
ε2

+ 1
r10

− · · ·

}
196. Fα =
2
c
.
π

$
.

(
ε+

1
ε

)
.

{
r + 1

r

r2 + ε2 + 1
ε2

+ 1
r2

+
r3 + 1

r3

r6 + ε2 + 1
ε2

+ 1
r6

+
r5 + 1

r5

r10 + ε2 + 1
ε2

+ 1
r10

− · · ·

}
.

Putting αi instead of α in formulas (192.), (193.), changing also c to e and e to c, and
noticing that the quantities

ω, $, ϕ(αi), F (αi), hαi
π
$ − h−αi

π
$ , hαi

π
$ + hαi

π
$ ,

respectively change to:

$, ω, iϕ(α), fα, 2i. sinα
π

ω
, 2 cosα

π

ω
,

they become:

84



197. ϕα =
4
ec
.
π

ω
.

∞∑
m=0

(−1)m.

 sin απ
ω

(
h(m+ 1

2)$πω − h−(m+ 1
2)$πω

)
h(2m+1)$π

ω + 2 cos 2απω + h−(2m+1)$π
ω

 ,

198. fα =
4
e
.
π

ω
.
∞∑
m=0

.

 cos απω .
(
h(m+ 1

2)$πω + h−(m+ 1
2)$πω

)
h(2m+1)$π

ω + 2 cos 2απω + h−(2m+1)$π
ω

 .

Putting for short

199. h
$π
2ω = %,

and expanding, we obtain:

200. ϕ
(
α
ω

2

)
=

4
ec
.
π

ω
. sin

(
α
π

2

)
.

{
%− 1

%

%2 + 2 cos(απ) + 1
%2

−
%3 − 1

%3

%6 + 2 cos(απ) + 1
%6

+
%5 − 1

%5

%10 + 2 cos(απ) + 1
%10

− · · ·

}
,

201. f
(
α
ω

2

)
=

4
e

π

ω
. cos

(
α
π

2

)
.

{
%+ 1

%

%2 + 2 cos(απ) + 1
%2

+
%3 + 1

%3

%6 + 2 cos(απ) + 1
%6

+
%5 + 1

%5

%10 + 2 cos(απ) + 1
%10

+ · · ·

}
.

Substituting into formulas (190.), (191.) the values of ε and r in place of hα
π
$ and h

ωπ
2$ ,

it becomes:

202. ϕα =
2
ec
.
π

$
.

∞∑
m=0

(−m).
{

1
ε.r−(2m+1) + ε−1.r2m+1

− 1
ε.r2m+1 + ε−1.r−(2m+1)

}
,

203. Fα =
2
c
.
π

$
.
∞∑
m=0

{
1

ε.r−2m−1 + ε−1.r2m+1
+

1
ε.r2m+1 + ε−1.r−2m−1

}
.

Suppose now that α < ω
2 , we have:

1
ε.r−2m−1 + ε−1r2m+1

=
ε−1.r−2m−1

1 + ε2.r−4m−2
= ε.r−2m−1 − ε3.r−6m−3 + ε5.r−10m−5 − · · · ,

1
ε.r2m+1 + ε−1.r−2m−1

=
ε−1.r−2m−1

1 + ε−2.r−4m−2
= ε−1.r−2m−1 − ε−3.r−6m−3 + ε−5.r−10m−5 − · · · ,

thus:
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ϕα =
2
ec
.
π

ω
.

{ ∞∑
m=0

(−1)m
{

(ε− ε−1).r−2m−1 − (ε3 − ε−3).r−6m−3 + (ε5 − ε−5).r−10m−5 − · · ·
}}

=
2
ec
.
π

ω
.

{
(ε− ε−1).

∞∑
m=0

(−1)mr−2m−1 − (ε3 − ε−3).
∞∑
m=0

(−1)mr−6m−3 + · · ·

}
.

Now:

∞∑
m=0

(−1)m.r−2m−1 = r−1 − r−3 + r−5 − · · · = r−1

1 + r−2
=

r

r2 + 1
,

∞∑
m=0

(−1)mr3m−3 = r−3 − r−6 + r−9 − · · · = r−3

1 + r−6
=

r3

r6 + 1

etc., hence:

204. ϕα =
2
ec
.
π

$
.

{
ε− ε−1

r + r−1
− ε3 − ε−3

r3 + r−3
+
ε5 − ε−5

r5 + r−5
− · · ·

}
.

In the same manner we find:

205. Fα =
2
c
.
π

$
.

{
ε+ ε−1

r − r−1
− ε3 + ε−3

r3 − r−3
+
ε5 + ε−5

r5 − r−5
− · · ·

}
.

By putting α$2 i in place of α, and also changing e to c and c to e,

ε; $; ϕ
(
α
$

2
i
)

; F
(
α
$

2
i
)

; r; εm + ε−m; εm − ε−m

become:

$; ω; iϕ
(
α
ω

2

)
; f
(
α
ω

2

)
; %; 2 cos

(
mα

π

2

)
; 2i sin

(
mα

π

2

)
;

thus:

206. ϕ
(
α
ω

2

)
=

4
ec
.
π

ω
.

{
sin
(
απ2
)

%+ 1
%

−
sin
(
3απ2

)
%3 + 1

%3

+
sin
(
5απ2

)
%5 + 1

%5

− · · ·

}
,

207. f
(
α
ω

2

)
=

4
e
.
π

ω
.

{
cos
(
απ2
)

%− 1
%

−
cos
(
3απ2

)
%3 − 1

%3

+
cos
(
5απ2

)
%5 − 1

%5

− · · ·

}
.

These last four formulas offer very simple expressions for ϕα, fα, Fα. By differentiating
and integrating one can deduce a host of others more or less remarkable.
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32.

In the case e = c, the preceding formulas take very simple forms because of the relation
ω = $ that takes place in this case. For simplicity, set e = c = 1. We have:

r = h
ωπ
2$ = h

π
2 , % = h

$π
2ω = h

π
2 ,

so by substituting and putting α = α$2 into (204.), (205.), we get:

ϕ
(
αω2
)

= 2.πω .
{
h
απ
2 −h−

απ
2

h
π
2 +h−

π
2
− h

3απ
2 −h−

3απ
2

h
3π
2 +h−

3π
2

+ h
5απ
2 −h−

5απ
2

h
5π
2 +h−

5π
2
− · · ·

}
,

F
(
αω2
)

= 2πω .
{
h
απ
2 +h−

απ
2

h
π
2 −h−

π
2
− h

3απ
2 +h−

3απ
2

h
3π
2 −h−

3π
2

+ h
5απ
2 +h−

5απ
2

h
5π
2 −h−

5π
2
− · · ·

}
,

ϕ
(
αω2
)

= 4π
ω

{
sin
(
απ2
)
. h

π
2

1+hπ − sin
(
3απ2

)
. h

3π2

1+h3π + sin
(
5απ2

)
. h

5π2

1+h5π − · · ·
}
,

f
(
αω2
)

= 4π
ω .
{

cos
(
απ2
)
. h

π
2

hπ−1 − cos
(
3απ2

)
. h

3π2

h3π−1
+ sin

(
5απ2

)
. h

5π2

h5π−1
− · · ·

}
.

The functions ϕ, f , F are determined by the equations

α.ω2 =
∫ x
0

∂x√
(1−x4)

; ω
2 =

∫ 1
0

∂x√
(1−x4)

;

x = ϕ
(
αω2
)

=
√

(1− x2) = f
(
αω2
)

=
√

(1 + x2) = F
(
αω2
)
.

If in the two last equations one sets α = 0, and if one notices that then the value of
ϕ(αω2 )
sin(απ2 ) is = ω

π and that of
sin(mαπ2 )
sin(απ2 ) = m, one will find:

ω

2
=
π

2
.

{
h
π
2

hπ − 1
− h

3π
2

h3π − 1
+

h
5π
2

h5π − 1
− · · ·

}
=
∫ 1

0

∂x√
(1− x4)

,

ω2

2
= π2.

{
h
π
2

hπ + 1
− 3

h
3π
2

h3π + 1
+ 5

h
5π
2

h5π + 1
− · · ·

}
=

(∫ 1

0

∂x√
(1− x4)

)2

.

(Continued in the next issue.)
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