
Research on the Precession of the Equinoxes
and on the Nutation of the Earth’s Axis∗

Leonhard Euler†

Lemma 1

1. Supposing the earth AEBF (fig. 1) to be spherical and composed of a
homogenous substance, if the mass of the earth is denoted by M and its
radius CA = CE = a, the moment of inertia of the earth about an arbitrary
axis, which passes through its center, will be = 2

5
Maa.

∗Leonhard Euler, Recherches sur la précession des equinoxes et sur la nutation de l’axe
de la terr, in Opera Omnia, vol. II.30, p. 92-123, originally in Mémoires de l’académie des
sciences de Berlin 5 (1749), 1751, p. 289-325. This article is numbered E171 in Eneström’s
index of Euler’s work.

†Translated by Steven Jones, edited by Robert E. Bradley c©2004
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Corollary

2. Although the earth may not be spherical, since its figure differs from that
of a sphere ever so slightly, we readily understand that its moment of inertia
can be nonetheless expressed as 2

5
Maa. For this expression will not change

significantly, whether we let a be its semi-axis or the radius of its equator.

Remark

3. Here we should recall that the moment of inertia of an arbitrary body
with respect to a given axis about which it revolves is that which results
from multiplying each particle of the body by the square of its distance to
the axis, and summing all these elementary products. Consequently this sum
will give that which we are calling the moment of inertia of the body around
this axis.

Lemma 2

4. If the earth, being considered as spherical, has about its center an equally
spherical core aebf , the density of which is to the crust as 1 + ν is to 1; then
letting the mass of the entire earth = M , the radius CA = a, and the radius
of the core Ca = α, the moment of inertia with respect to an arbitrary axis,
which passes through its center, will be

=
2

5
M

a5 + να5

a3 + να3
.

Corollary 1

5. If the core is more dense than the rest of the earth, the value of ν will
be positive, but if the core is less dense than the crust, ν will be a negative
number. Now, if the earth were entirely hollow inside or if the space aebf
were empty, we would have ν = −1, and in this case the moment of inertia
would become

=
2

5
M

a5 − α5

a3 − α3
.

Corollary 2

6. We will agree still that a small aberration of the spherical figure does not
significantly change the expression of the moment of inertia, so long as the
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figure of the core is more or less spherical. At least it is quite certain that in
the application of these two propositions to the precession of the equinoxes,
a small difference would be seen to be of little consequence, since we will be
obliged to content ourselves with approximations.

Hypothesis

7. The earth, having once received a rotational movement around an axis,
which agrees with its axis on the figure or only differs from it slightly, will
always conserve this uniform movement, and its axis of rotation will always
remain the same and will be directed toward the same points of the sky,
unless the earth should be subjected to external forces which might cause
some change either in the speed of rotational movement or in the position of
the axis of rotation.

Remark

8. In order for a body to be able to turn freely around an axis, it is not
sufficient that this axis passes through its center of gravity, it must also be
the case that all the centrifugal forces maintain themselves in equilibrium,
and when this last condition does not hold, it is impossible for the axis of
rotation to remain the same. Instead, it will continually be changed by the
centrifugal forces of the body. It depends therefore solely on the distribution
of the mass of the earth, whether or not the axis around which it turns is
endowed with this property. For if all the centrifugal forces do not mutually
cancel each other, the poles of the earth will undergo changes, even if there
would be no external forces. It is therefore only pure supposition that I am
making when I say that the axis of the earth, around which it turns, is not
subjected to such changes, but it seems that this supposition is confirmed by
the phenomena, and it will be entirely so when I have shown that there are
actually no other changes in the poles except for those which are caused by
the forces of the sun and the moon.

Corollary

9. From this it follows that any force, the direction of which passes through
the center of gravity of the earth changes neither its rotational movement nor
the position of its axis. Therefore we will only make use of those forces acting
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on the earth, whose direction does not pass through the center of gravity,
when explaining the changes we observe in its poles.

Problem 1

10. All the parts of the earth being attracted toward a fixed point 0, of which
the forces are proportional to an arbitrary power of the distances, to find
the total force to which the earth will be subjected, supposing the earth to be
spherical and composed of a homogenous substance.

Solution

Let the semi-axis of the earth CA = CB = a, the radius of the equator
CE = CF = e, and from the attracting point O let us drop to the plane of
the equator the perpendicular OT , and having drawn the straight lines CT ,
CO, let CT = f , TO = g, CO = h =

√
ff + gg. Let the attracting force

from the point O at an arbitrary distance z be kn

zn . That is, let this force be
reciprocally proportional to the power zn of the distance. Moreover, let the
mass of the earth = M . Given this we find by the Theory of Forces that the
total force, to which the earth is drawn toward the point O, results from two
forces.
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1. The force along CO, which is

=
Mkn

hn

(
1 − (n + 1)aa − 4(n + 1)ee

10hh
+

(n + 1)(n + 3)(aagg + eeff)

10h4

)

2. The force along TO, which is

=
n + 1

5
M

kn

hn
· g(ee − aa)

h2
.

We might well reduce these two forces into a single one, which would pass
through the point O and a point of the axis a little below the center C; but
for our intentions, it would be more convenient to make use of these two
forces along CO and TO.
Q.E.D.

Corollary 1

11. As the direction of the force along CO passes through the center of the
earth, it contributes neither to the rotational movement of the earth nor to
the to the changing of its poles. And, if the earth were subject to this force
alone, neither its rotational movement nor the position of its poles would
undergo change.

Corollary 2

12. Therefore, it is only necessary to consider the force along TO, if we wish
to investigate the changes that the attraction from point O can produce in
the rotational movement of the earth and in the position of the poles. And to
this end we easily understand that these effects result only from the moment
of this force.

Corollary 3

13. Now the moment of this force along TO is in the direction of a diameter
of the equator which is perpendicular to the plane ABO, which is determined
by the axis of the earth AB and the point O, and the moment of this force
will be

=
n + 1

5
· M · kn

hn
· g(ee − aa)

h3
· CT.
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This moment will therefore be

=
n + 1

5
· M · kn

hn
· fg(ee− aa)

h3
.

Corollary 4

14. We could therefore conceive of a force equivalent to AG applied perpen-
dicularly to the axis at A, which tends to move point A away from point O;
this direction AG being [likewise situated] in the plane ABO. Therefore the
moment of the force will be:

AG · AC =
n + 1

5
· M · kn

hn
· fg(ee − aa)

h3
.

And this moment will produce the same effect on the rotational movement
of the earth as the force which attracts it toward point O.

Corollary 5

15. If we call the angle ACO = ϕ, which will denote the apparent distance
from point O to the pole of the earth A, seen from the center of the earth,
we will have f

h
= sin ϕ and g

h
= cos ϕ. Therefore the moment in question will

be

AG · AC =
n + 1

5
· M · kn

hn+1
(ee − aa) sin ϕ cos ϕ.

Corollary 6

16. It is clear that the moment would vanish, if the earth were spherical,
since then we would have e = a. But if the diameter of the equator EF
exceeds the axis of the earth AB, or if e > a, then this moment is positive,
such as it is presented in the figure. But if the diameter of the equator were
smaller than that of the earth’s axis, this moment would become negative
and would consequently produce a contrary effect.

Corollary 7

17. This same moment will still become negative, although e > a, if the
angle ACO is obtuse or larger than a right angle. For if ϕ > 90◦, its cosine
or cos ϕ will become negative, and therefore also the moment. From this we
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would also note that this moment will vanish when the angle ACO is right,
and that this same moment will be maximized when the angle ACO = ϕ is
half a right angle or a right angle and a half.

Problem 2

18. The earth being supposed to have a spheroidical core about its center, if
all its parts are attracted towards a center of force O, which attracts according
to an arbitrary power of the distance, to find the moment of force to which
the earth will be subjected.

Solution

As before let the demi-axis of the earth be CA = CB = a, the radius of its
equator CE = CF = e. For the core, let the demi-axis be Ca = Cb = α, and
the radius of its equator Ce = Cf = ε. Then let the density of the core [be]
to that of the crust as 1 + ν is to 1. Then having dropped from the point O
onto the plane of the equator the perpendicular OT , let CT = f , TO = g,
CO = h =

√
ff + gg. Now at the distance = z let the attractive force of the

point O be kn

zn . Given this, and denoting the mass of the whole earth [by] M ,
the force by which the earth is attracted towards point O will produce the
same effect on its rotational movement, as if one applied to the axis in the
plane ABO a certain force AG, the moment of which would be

=
(n + 1)Mknfg

5hn+3
· aee(ee − aa) + ναεε(εε − αα)

aee + ναεε
.

Or rather denoting the angle ACO = ϕ, this moment will be

AC · AG =
(n + 1)Mkn sin ϕ cos ϕ

5hn+1
· aee(ee − aa) + ναεε(εε − αα)

aee + ναεε
.

Q.E.D.

Corollary 1

19. If the aberration of the spherical figure, both of the earth and its core,
is extremely small, as one may surely suppose, this moment will be almost
exactly

AC · AG =
(n + 1)Mkn sin ϕ cos ϕ

5hn+1
· a3(ee − aa) + να3(εε − αα)

a3 + να3
.
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Corollary 2

20. If the core were exactly spherical, this moment would be

AC · AG =
(n + 1)Mkn sin ϕ cos ϕ

5hn+1
· a3(ee − aa)

a3 + να3
.

Now if the whole earth were composed of a uniform substance, this moment
would be

=
(n + 1)Mkn sin ϕ cos ϕ

5hn+1
(ee − aa).

Therefore the moment for an earth endowed with a spherical core will be
smaller than that for an homogenous earth, if the core is denser than the
crust. However if the core were less dense, the first moment would exceed
the other.

Corollary 3

21. If the point O were attracted exactly by virtue of the inverse square of
the distance, that is if n = 2, then the moment we seek would be:

AC · AG =
(n + 1)Mkk sin ϕ cosϕ

5h3
· a3(ee − aa) + να3(εε − αα)

a3 + να3
.

and this would be so in the case of the force of the sun on the earth.

Corollary 4

22. If the force from the point O were directly proportional to the distance,
we would have n = −1, and so the moment would vanish entirely. This
becomes quite clear from the outset, if one but reflects on the nature of this
force.

Corollary 5

23. If the force were composed of two parts, or if it were expressed in the
form kn

zn ± im

zm , we easily see that the moment we seek would be expressed in
this manner:

M sin ϕ cos ϕ

5h

(
(n + 1)kn

hn
± (n + 1)im

hm

)
a3(ee − aa) + να3(εε − αα)

a3 + να3
.
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Corollary 6

24. Therefore if the force of the moon were expressed at the distance z in
the form k2

h2 − δ, where δ denotes a constant quantity, as several phenomena
appear to confirm, as a result of n = 2, m = 0 and im

hm = δ, the moment in
question would be, supposing the moon to be at O

AG · AC =
M sin ϕ cos ϕ

5h

(
3kk

hh
± δ

)
a3(ee − aa) + να3(εε − αα)

a3 + να3
.

Corollary 7

25. This moment would therefore be smaller than it would be if the force of
the moon were entirely due to the inverse square of the distance. It is surely
appropriate to take into account the constant δ in the calculations, which I
will undertake on the variation of the poles of the earth, in order to see if
this new hypothesis is confirmed or not.

Problem 3

26. The earth, while it turns about the axis CA, being subjected to a force
AG applied to the end point A of this axis, of which the moment AG ·AC is
known, to find the instantaneous change that will be caused by this force in
the axis of rotation.

Solution

Let C be the center of the earth, and CA the axis of the earth extended
to the heavens, around which the earth is presently turning in the direction
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EHF ; of which the speed is such that in an infinitely small time = dt, it
describes around its axis an angle = ds. Let us denote as before the mass of
the earth = M , and its demi-axis = a. In this instant therefore A will be the
pole of the earth projected into the heavens, around which the earth would
continue to turn uniformly, if it were not subjected to any external force. But
as it is subjected to the force AG, of which the moment AG ·AC is = S, this
force, since it passes through the axis of the earth will change nothing in the
speed of rotation, but it would require the earth to turn around another axis,
which will be such that after an infinitely small time = dt the pole of the
earth will no longer correspond to the point A in the heavens, but to another
point a situated on the meridian, which is perpendicular to the meridian
AE, which corresponds to the direction of the force AG, in the direction of
the rotational movement. And by the principles of the Mechanics, that I
will explain elsewhere, we find that this change, or the angle ACa, will be
expressed as follows:

ACa =
Sdt2

2ds
:
2

5
Maa =

5Sdt2

4Maads
,

where 2
5
Maa denotes the moment of inertia of the earth, supposing it to be

homogenous. Now if the earth had a core around its center, of which the
radius = α, and the density to that of the crust were as 1 + ν : 1, then in
place of 2

5
Maa we would need to write

2

5
M · a5 + να5

a3 + να3
.

Hence the [instantaneous] change of the pole would be:

ACa =
Sdt2

2ds
:
2

5
M

a5 + να5

a3 + να3
=

5Sdt2(a3 + να3)

4Mds(a5 + να5)
.

Q.E.D.

Corollary 1

27. The effect of such a force AG will thus consist in how the poles about
which the earth turns correspond over time to other points in the heavens.
And it is also clear that the line Ca will pass through different points of the
earth from the line CA, in such a way that the location of the poles on the
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earth will also change continually. But they will always differ so slightly from
the extremities of the earth’s axis that the difference, being only about 11

3

third parts, is totally imperceptible.

Corollary 2

28. If we conceive of a center of forces O, toward which the earth is attracted,
in the meridian AF opposite to AE, we have seen that from this force results
a moment such that AG·AC = S. Therefore the effect of this force will be the
same as that which we have just determined in the solution of this problem.

Corollary 3

29. Thus if we suppose the distance from this center of forces to the earth
CO = h, the angle ACO or the arc AO = ϕ, the force to the distance z as
kn

zn , the moment AG · AC will be

S =
(n + 1)Mkn

5hn+1
sin ϕ cosϕ(ee − aa),

supposing the earth homogenous (see §15). Consequently the change of the
pole caused by the this force will be

ACa =
(n + 1)kn

4hn+1
· dt2

a2ds
(ee − aa) sin ϕ cos ϕ.

Corollary 4

30. If the earth is not homogenous, but it has a core around its center, of
which the demi-axis = α, the demi-diameter of its equator = ε, and the
density to that of the crust is 1 + ν to 1, we have seen that it will be:

S =
(n + 1)Mkn sin ϕ cosϕ

5hn+1
· a3(ee − aa) + να3(εε − αα)

a3 + να3

from which the change in the pole will be

ACa =
(n + 1)kn

4hn+1
· a3(ee − aa) + να3(εε − αα)

a5 + να5
· dt2

ds
sin ϕ cos ϕ.
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Remark

31. To give the expression of time in terms of better known quantities, let us
consider the mean motion of the earth. Let the average distance of the earth
to the sun = b, the attractive force of the sun to the earth = cc

bb
, and that

during an element of time dt the earth travels in its mean motion through
an angle with respect to the sun = dv. Given this, by the same principles of
Mechanics we find bdv2 = ccdt

2bb
, from which we have dt2 = 2b3

cc
dv2. Therefore,

we need only write this value 2b3

cc
dv2 in place of dt2 to express the time in

terms of the mean motion of the sun. Then while the sun advances by its
mean motion through the angle dv, and the earth through its diurnal motion
through the angle ds, the change of the pole in the case of the preceding
corollary will be:

ACa =
(n + 1)kn

2hn+1
· b3

cc
· a3(ee − aa) + να3(εε − αα)

a5 + να5
· dv2

ds
sin ϕ cos ϕ.

Now ds is to dv as the diurnal motion of the earth is to its annual motion.
Therefore since the earth makes each revolution about its axis or 360◦ in 23h,
56’, 4”, and since in this time the average motion of the sun is 58’, 58”, we
have ds = 36625

81
dv. And therefore the change found in the pole will be:

ACa =
1

73250
81

(n + 1)kn

hn+1
· b3

cc
· a3(ee − aa) + να3(εε − αα)

a5 + να5
dv sin ϕ cos ϕ.

Problem 4

32. To find the elementary change of the pole of the earth in the heavens,
given that it is caused as much by the force of the sun as by that of the
moon.

Solution

Let a remain the demi-axis of the earth, e the radius of its equator, and let
the earth be homogenous with the exception of a spheroidical core about its
center, of which the demi-axis is = α, the radius of its equator = ε, and the
density to that of the crust as 1 + ν is to 1. For simplicity let

a3(ee − aa) + να3(εε − αα)

ar + να5
= N
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and let the north pole of the earth at the given instant correspond to the
point A in the heavens. Now let the sun be at O, and the arc of the meridian
AO = ϕ; the distance of the sun to the earth = b, and its force on the earth
= cc

bb
. Given this we will have h = b, k = c, and n = 2. Therefore in the time

that the average movement of the sun advances an infinitely small angle dv,
the pole of the earth will be moved from A to a, in a meridian perpendicular
to the meridian of AOF , where the sun is found, in such a way that this
change will be

Aa or Aca =
3

73250
81

· N dv sin ϕ cos ϕ

supposing that the rotational movement of the earth is made in the direction
EHF , and this will be the momentary effect of the force of the sun.

Now if the moon is located at O, of which the distance of the earth = h,
and the force = kk

hh
− δ, as I have supposed above (24), and the value of

(n+1)kn

hn+1 will change to 3kk
h3 − δ

h
. Also let the arc AO = ϕ, and while the mean

motion of the sun = dv, the force of the moon will move the pole of the earth
from A to a also in a meridian perpendicular to AOF , in such a way that
Aa, or

ACa =
1

73250
81

(
3kk

h3
− δ

h

)
b3

cc
N dv sin ϕ cos ϕ.

Now we must note here that 3kk
h3 − δ

h
is to 3cc

b3
as the force of the moon to

cause the tides is to that of the sun, a ratio which Newton has established
as 41

2
to 1. But as this determination is not too certain, let us suppose that

in the production of the flux and reflux of the ocean, the force of the moon
is to that of the sun as m to 1, and we will have

3kk

h3
− δ

h
=

3mcc

b3
,

and consequently the change of the pole caused by this force of the moon
will be:

Aa or Aca =
3m

73250
81

· N dv sin ϕ cos ϕ

Q.E.D.
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Corollary 1

33. If we let
3

73250
81

N = λ

for the sake of simplicity, the sun being supposed at O in such a way that
AO = ϕ, the change of the pole will be Aa = λdv sin ϕ cos ϕ. Now if
we suppose the moon at O, then the change of the pole will be Aa =
λmdv sin ϕ cos ϕ.

Corollary 2

34. Thus if we should find by observing the changes of the pole of the earth
the value of the number λ, we will derive from this N = 73250

81
· 1

3
λ; and from

this value we would be able to determine the core of the earth, since

N =
a3(ee − aa) + να3(εε − αα)

ar + να5
.

Remark

35. If the earth had no core at all, but were formed from a homogenous
matter, the value of N would be known. For since the diameter of the equator

surpasses the axis by a 200th part, as was concluded by the observations done
in the North, in France, and in Peru, we have a : e = 200 : 201, and in this
case we will have

N =
(

201

200

)2

− 1 =
1

100
and so λ =

3

100 · 73250
81

=
1

24, 421
.

Problem 5

36. Supposing that the sun moves according to its mean motion, to find the
changes that its force will cause in the poles of the earth.

Solution

Let (Fig. 4) ΥΞΛ1 be the ecliptic and Π be the pole of the ecliptic; however
Υ does represent the point of the equinox, but rather some fixed point in the

1In the original, Euler uses the zodiacal symbols for Aries, Cancer and Libra here, as
in Figure 4.
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heavens, such as 1 ∗ Υ2. Let the longitude of the sun at S from this fixed
point be ΥS = p, and let at this time the pole of the earth be found at P ,
and let ΥΠP = x, ΠP = y. Let us draw the arcs of the great circles ΠS,
PS, and in the spherical triangle PΠS we will have PΠS = p − x; PΠ = y
and ΠS = 90◦, from which we derive

cos PS = cos(p − x) sin y and cot ΠPS = −cos(p − x) cos y

sin(p − x)
.

Now setting PS = ϕ, the pole will be moved from P to p, so that Pp will
be perpendicular to PS and Pp = λdv sin ϕ cos ϕ, while the sun advances
through the angle dv; we will therefore have dp = dv, and having drawn Πp,
we have ΞΠp = x− dx3, and Πp = y + dy. Thus dropping the perpendicular
Pq to ΠP , we will have pq = dy and Pq = −dx sin y. Now the angle pPq
being the compliment of the angle ΠPS in two right angles, we will have

cot pPq =
cos(p − x) cos y

sin(p − x)
and tan Ppq =

cos(p − x) cos y

sin(p − x)
.

Consequently we will have:

Pq = −dx sin y = Pp · sin Pqp and pq = dy = Pp cosPqp.

2Again, Euler uses the symbol for Aries here, in referring to a particular star that
constellation.

3In the original edition, this was x + dx; this corection was made by Leo Courvoisier,
editor of vol. II.30 of Euler’s Opera Omnia.
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Now since cos ϕ = cos(p − x) sin y; we will have

sin Pqp =
cos(p − x) cos y

sin y
and cosPqp = sin(p − x) sin ϕ.

Therefore since Pp = λdp sin ϕ cosϕ, we will obtain

−dx sin y = λdp cos ϕ cos(p − x) cos y = λdp cos2(p − x) cos y sin y

and
dy = λdp cosϕ sin(p − x) = λdp sin(p − x) cos(p − x) sin y.

But since sin(p−x) cos(p−x) = 1
2
sin 2(p−x) and cos2(p−x) = 1

2
+ 1

2
cos 2(p−

x), these equations will take the following form:

−dx =
1

2
λdp(1 + cos 2(p − x)) cos y

and dy =
1

2
λdp sin 2(p − x) sin y.

Now since it is easy to see that the variability of x and y is infinitely small
with respect to that of p, in the integration we will be able to consider x and
y as though they were constant quantities, and so the integrals will be:

x = C − 1

2
λ
(
p +

1

2
sin 2(p − x)

)
cos y

y = C − 1

2
λ cos 2(p − x) sin y

from which we will know at any given time the location of the pole of the
earth in the heavens.
Q.E.D.

Corollary 1

37. Since p− x denotes PΠS, and the circle ΠP passes through the summer
solstice, this angle p−x will express the longitude of the sun measured from
the summer solstice. Thus if we set the longitude for the sun from the vernal
equinox = p, we will have p − x = p − 90◦, and 2(p − x) = 2p − 180◦. From
this we will have

x = C − 1

2
λ(p − 1

2
sin 2p) cos y and y = C +

1

4
λ cos 2p sin y.
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Corollary 2

38. In these formulas y denotes the mean distance of the pole of the earth
from that of the ecliptic. Therefore setting this mean distance of the poles
= ϑ, we will have

x = C − 1

2
λv cos ϑ +

1

4
λ sin 2p cos ϑ

and y = ϑ +
1

4
λ cos 2p sinϑ.

Now the value of ϑ is approximately 23◦28′30′′.

Corollary 3

39. Setting ϑ = 23◦28′30′′, we will have, reducing the sine and cosine of ϑ to
angles expressed in seconds4,

x = C − 0.458617′′λv + 47, 298′′λ sin 2p

y = ϑ + 20, 541′′λ cos 2p.

Corollary 4

40. From this it is clear that the force of the sun makes the pole of the earth
recede; for after one year, when v becomes v+360◦, the longitude of the pole
for 1 ∗ Υ will be

x = C − 0.458617λ(v + 360◦) + 47, 298′′λ sin 2p.

Thus during one year the pole of the earth recedes in longitude by the quan-
tity = 0.458617λ(v + 360◦).

Corollary 5

41. Thus if the earth were formed from a uniform matter, in such a way that
λ = 1

24421
, the annual precession of the pole and also of the equinoxes would

4The second coefficient on the next line was 46,222 in the original edition. We use the
value 47,298 as given by Courvoisier in the Opera Omnia
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be = 241
3

seconds; under the assumption that it be caused only by the action
of the sun. And under the same hypothesis, after A years, we will have

x = C − 24
1

3
A′′ + 1

8

9

′′
sin 2p

y = ϑ +
5

6

′′
cos 2p.

Therefore in addition to the mean motion, the pole will be drawn away
from its mean location by almost 2′′ in longitude, and by almost a second in
latitude.

Problem 6

42. Supposing the motion of the moon to be uniform about the earth, to find
the changes that the force of the moon will cause in the poles of the earth.

Solution

Letting ΥΞΛ (Fig. 5) be the ecliptic as before, and Π its pole, and let the
pole of the earth be found at this hour at P , and let us denote as before
the angle ΥΠP = x, ΠP = y. At the same time let the moon be at L, and
letting its distance to the pole LP = ϕ, we have seen from the above that as
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long as the mean motion of the sun is = dv, the pole P will be moved to p,
along the element Pp perpendicular to PL, in such a way that

Pp = λmdv sin ϕ cos ϕ,

from which we conclude as in the preceding problem:

−dx sin y = λmdv sin ϕ cos ϕ sin Ppq

and dy = λmdv sin ϕ cos ϕ cos Ppq.

It is therefore a matter of determining the angles ϕ and Ppq. To this end, let
ΩLN5 be the orbit of the moon and from Ω the ascending node with longitude
ΥΩ = r, and the inclination of the lunar orbit to the ecliptic LΩK = �. Since
we are supposing the motion of the moon to be uniform, it will not matter
if we attribute this uniformity to the movement in the orbit itself, or to a
movement in longitude, because the difference is extremely small. Therefore
let q be the longitude of the moon = ΥK in such a way that the angle
ΥΠL = q, and we will have ΩK = q − r. From this we will find the latitude
LK, which I will denote by s = LK, and we will have tan s = sin(q−r) tan �.
Now in the triangle PΠL having PΠ = y, PΠL = q − x and ΠL = 90◦ − s
we will have:

cos PL = cos ϕ = cos(q − x) sin y cos s + cos y sin s

and

cot ΠPL =
sin y sin s − cos(q − x) cos y cos s

sin(q − x) cos s
= −tanPqp

so that

tan Ppq =
cos(q − x) cos y cos s − sin y sin s

sin(q − x) cos s
,

and from there we will conclude:

sin Ppq =
cos(q − x) cos y cos s − sin y sin s

sin ϕ

and cosPqp =
sin(q − x) cos s

sin ϕ
.

5In the original, Euler used the zodiacal symbol for Leo here, as in Figure 5.
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Substituting these values will give:

−dx sin y = λmdv cos ϕ(cos(q − x) cos y cos s − sin y sin s)

dy = λmdv cos ϕ sin(q − x) cos s

or also substituting for cosϕ its value:

−dx sin y = −λmdv(cos(q − x) sin y cos s + cos y sin s)

×(cos(q − x) cos y cos s − sin y sin s)

dy = λmdv(cos(q − x) sin y cos s + cos y sin s) sin(q − x) cos s.

Now

sin s =
tan � sin(q − r)√

1 + tan2 � sin2(q − r)

and cos s =
1√

1 + tan2 � sin2(q − r)

which gives:

dx sin y =
−λmdv√

1 + tan2 � sin2(q − r)

·
[
cos2(q − x) sin y cos y + cos(q − x) cos2 y tan � sin(q − r)

− sin y cos y tan2 � sin2(q − r) − cos(q − x) sin2 y tan � sin(q − r)
]

and

dy =
λmdv[sin(q − x) cos(q − x) sin y + sin(q − x) cos y tan � sin(q − r)]√

1 + tan2 � sin2(q − r)

To integrate these formulas we must note that we may consider x, y, and
� to be constant quantities. Therefore let tan � = γ, which is a very small
quantity, and let ϑ be the mean distance from the pole of the earth to the
pole of the ecliptic. Thus we will have:

dx sin ϑ = −1

2
λmdv·

sin 2ϑ cos2(q − x) + 2γ cos 2ϑ cos(q − x) sin(q − r) − γ2 sin 2ϑ sin2(q − r)

1 + γγ sin2(q − r)
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dy = λmdv · sin ϑ sin(q − x) cos(q − x) + γ cos ϑ sin(q − x) sin(q − r)

1 + γγ sin2(q − r)

Now since γ is a very small number, knowing that it is the tangent of an
angle of about 5◦, we may replace these denominators by performing a long
division, and it will be permissible to neglect those terms in which the power
of γ is greater than two. We will thus have:

dx sin ϑ = −1

2
λmdv

[
sin 2ϑ cos2(q − x) + 2γ cos 2ϑ cos(q − x) sin(q − r)

−γγ sin 2ϑ sin2(q − r)(1 + cos(q − x)2)
]

dy = λmdv [sin ϑ sin(q − x) cos(q − x) + γ cos ϑ sin(q − x) sin(q − r)

γγ sin ϑ sin(q − x) cos(q − x) sin2(q − r)
]

Now we need to reduce these products of the sines and cosines of the variable
angles to the sines and cosines of simple angles, and since cos2 A = 1

2
+

1
2
cos 2A; sin A cos A = 1

2
sin 2A and sin2 A = 1

2
− 1

2
cos 2A, we will have:

dx sin ϑ = −1

2
λmdv

[
1

2
sin 2ϑ +

1

2
sin 2ϑ cos 2(q − x)

+2γ cos 2ϑ cos(q − x) sin(q − r)

−γγ sin 2ϑ sin 2(q − x)
(

1

2
− 1

2
cos 2(q − r)

)(
3

2
+

1

2
cos 2(q − x)

)]

dy = λmdv
[
1

2
sin ϑ sin 2(q − x)

+γ cos ϑ sin(q − x) sin(q − r)

−1

2
γγ sin ϑ sin 2(q − x)

(
1

2
− 1

2
cos 2(q − r)

)]
.

Moreover since

cos A sin B =
1

2
sin(A + B) − 1

2
sin(A − B)

sin A sin B =
1

2
cos(A − B) − 1

2
cos(A + B)

cos A cos B =
1

2
cos(A − B) +

1

2
cos(A + B)

after we have made all these reductions we will have:

dx sin ϑ = −1

2
λmdv

[
1

2
sin ϑ +

1

2
sin ϑ cos 2(q − x)
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+γγ cos 2ϑ sin(2q − r − x) − γ cos 2ϑ sin(r − x)

−3

4
γγ sin 2ϑ +

3

4
γγ sin 2ϑ cos 2(q − r) − 1

4
γγ sin 2ϑ cos 2(q − x)

+
1

8
γγ sin 2ϑ cos 2(r − x) +

1

8
γγ sin 2ϑ cos 2(2q − r − x)

]

dy = λmdv
[
1

2
sin ϑ sin 2(q − x) +

1

2
γ cos ϑ cos(r − x)

−1

2
γ cos ϑ cos(2q − r − x) − 1

4
γγ sin ϑ sin 2(q − x)

+
1

8
γγ sin ϑ sin 2(2q − r − x) +

1

8
γγ sin ϑ sin 2(r − x)

]

To integrate these equations we must take note that the differentials of q and
r are given with regard to the differential dv, which are those of the mean
motion of the moon and of the retrograde motion of the node to the mean
motion of the sun. Therefore let:

dq = µdv and dr = −κdv

and the desired integrals will be:

x sin ϑ = C − 1

2
λm




1
2
v sin 2ϑ + 1

4µ
sin 2ϑ sin 2(q − x)

− γ
2µ+κ

cos 2ϑ cos(2q − r − x)

−γ
κ

cos 2ϑ cos(r − s) − 3
4
γγv sin 2ϑ

+ 3γγ
8(µ+κ)

sin 2ϑ sin 2(q − r)

−γγ
8µ

sin 2ϑ sin 2(q − x)

− γγ
16κ

sin 2ϑ sin 2(r − x)
+ γγ

16(2µ+κ)
sin 2ϑ sin 2(2q − r − x)

y = ϑ + λm




− 1
4µ

sin 2ϑ cos 2(q − x) − γ
2κ

cos ϑ sin(r − x)

− γ
2(2µ+κ)

cos ϑ sin(2q − r − x)

+γγ
8µ

sin ϑ cos 2(q − x)

− γγ
16(2µ+κ)

sin ϑ cos 2(2q − r − x)

+ γγ
16κ

sin ϑ cos 2(r − x)

Q.E.D.

Corollary 1

43. Since ϑ is more or less 23◦28′30′′ and γ is the tangent of the inclination
of the orbit of the moon to the ecliptic, the mean value of which is = 5◦9′,
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these expressions reduced to seconds will be6:

x = C − 0.45302λmv − 46685

µ
λm sin 2(q − x)

+
16952

2µ + κ
λm cos(2q − r − x) +

16952

κ
λm cos(r − x)

− 576

µ + κ
λm sin(q − r) +

96

κ
λm sin(r − x)

− 96

2µ + κ
λm sin 2(2q − r − x)

y = ϑ − 20008

µ
λm cos 2(q − x) − 8525

κ
λm sin(r − x)

− 8525

2µ + κ
λm sin(2q − r − x) − 40

2µ + κ
λm cos 2(2q − r − x)

+
40

κ
λm cos 2(r − x)

Corollary 2

44. Now since µ : 1 as the mean motion of the moon is to that of the sun,
we will have µ = 13, 368, and since κ : 1 as the mean retrograde motion of
the node is to the motion of the sun, we will have κ = 1

18,616
. These values

being substituted, our integral equations will become:

x = C − 0.45302λmv − 3, 492λm sin 2(q − x) + 594λm cos(2q − r − x)

+ 296, 535λm cos(r − x) − 43λm sin 2(q − r)

+ 1, 788λm sin 2(r − x) − 4λm sin 2(2q − r − x)

y = ϑ − 1, 497λm cos 2(q − x) − 158, 718λm sin(r − x)

− 363λm sin(2q − r − x) − 2λm cos 2(2q − r − x)

+ λm cos 2(r − x)

Corollary 3

45. From this we clearly see that if the terms cos(r−x) and sin(r−x) are not
too large, that is if they do not exceed 100′′, which we recognize immediately,

6The factors λm were omitted from the final term in the expression for y in the version
printed in Euler’s Opera Omnia
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then all the other terms can be ignored without error due to their extremely
small magnitude, and consequently our formulas will become much simpler.

x = C − 0.45302λmv + 286, 535λm cos(r − x)

= ϑ + 158, 718λm sin(r − x)

Corollary 4

46. Here v denotes the mean motion of the sun counting from a given epoch,
where the location of the pole is assumed to be known, and r − x denotes
the longitude of the ascending node from the present location of the pole,
that is to say, from the summer solstice. Thus, if we let the longitude of the
ascending node from the vernal equinox = u, we will have r − x = u − 90◦

and our formulas will be:

x = C − 0.45302λmv + 296, 535λm sinu

y = ϑ + 158, 718λm cosu

Remark

47. Since all the terms that depend on the mean motion of the moon were
taken out of our formulas because of their smallness, we will easily understand
that if I had introduced into the calculation the true motion of the moon,
having taken into account its apogee and the position of the sun, all the terms
that would have been introduced into our formulas, would have vanished for
even stronger reasons. For then in place of q we would have had q+A+B+C+
. . ., where A, B, C, denote angles dependent on the anomaly of the moon
and its elongation from the sun; and it is clear that the terms containing
q + A + B + C + . . . would be taken out of the calculation in the same way
as those in our formulas that contained q. Now, it is not the same for the
terms which contain the position of the ascending node, because the latitude
of the moon depends on them, which particularly affects the calculation.
From there we understand that if the movement of the node were faster
than it actually is, the inequalities in the movement of the pole would be
smaller for the same reason; and these inequalities would be especially large,
if the movement of the nodes were slower. Now if the nodes remained fixed,
the mean motion of the pole would be slowed down by it, and because r
is constant, dx would no longer be almost infinitely small in relation to dr
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but rather infinitely large, and therefore we would be obliged to look for the
integral of our formulas by an entirely different method.

Problem 7

48. To determine the variation that we need to find in the position of the
poles of the earth, given that they are caused conjointly by the forces of the
sun and of the moon.

Solution

Let ϑ be the mean distance from the north pole of the earth to the pole of
the ecliptic, and for a given epoch let the mean longitude of the pole of the
earth, from a fixed star, such as 1 ∗ Υ, be = ζ . At present it is a matter
of determining the position of the north pole of the earth, letting its true
longitude = x and its true latitude = 90◦ − y7; and that from the given
epoch up till now, let the mean motion of the sun = v. Further for the
present time, let the longitude of the sun from the vernal equinox = p and
the longitude of the ascending node = u; where we need to suppose that the
position of the pole is already approximately known. This established, we
have seen that by virtue of the force of the sun we will have8:

x = C − 0.458617λv + 46, 222λ sin 2p

y = ϑ + 20, 541λ cos 2p.

Now the force of the moon gives

x = C − 0.45302λmv + 296, 535λm sinu

y = ϑ + 158, 718λm cosu

Therefore these two forces working together will produce the effect contained
in the following formulas9

x = ζ − 0.45862λv + 46, 222λ sin 2p

7In the original edition, this was y. The correction was made by Courvoisier.
8The last coefficient in the first expression for x was corrected from 46,222 to 47,298

by Courvoisier in §39, but the value of 46,222 appears twice in this paragraph, so we have
reproduced that value from the Opera Omnia here. Also, the first coefficient of y was
actually given as 20,641 in the Opera Omnia edition; we have changed this to the correct
value of 20,541.

9The coefficient 46,222 was mistakenly given as 56,222 in the Opera Omnia.
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− 0.45302λmv + 296, 535λm sinu

y = ϑ + 20, 541λ cos 2p + 158, 718λm cosu

Q.E.D.

Corollary 1

49. Here we can distinguish two sorts of movement. The first contains the
mean movement of the pole, and is given by these two formulas

x = ζ − 0.45872λv − 0.45302λmv and y = ϑ

by which we will find the mean position of the pole, for any given time. Then
the other terms make up the equations, which are needed to correct the mean
longitude as well as the mean latitude of the pole.

Corollary 2

50. Regarding the mean position of the pole, we see that its distance to
the pole of the ecliptic is always the same, but that the longitude decreases
more and more; that is to say the movement of the pole in longitude will be
retrograde in relation to the fixed starts, and this retrogression in a year will
be

of 1, 296, 000λ(0.45862 + 0.45302m) seconds

or of 594, 371λ + 587, 114λm seconds.

Corollary 3

51. Neglecting the inequalities that depend on the location of the sun, since
they are very small, the true longitude of the pole will be greater than the
mean, when the ascending node is found in the boreal signs; but if this node
is in the austral signs, then the true longitude will be smaller than the mean.
Now the difference between the true longitude and the mean longitude of the
pole will be the greatest when the node is in the solisticial points; and this
difference will consist of 296, 537λm seconds.
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Corollary 4

52. The distance of the pole of the earth to that of the ecliptic will be greater
when the ascending node is found in the vernal equinox: but if this node is
in the autumnal equinox, then the pole of the earth will be found closer to
that of the ecliptic. In these cases the greatest difference between the true
latitude and the mean latitude of the pole will be of 158, 718λm seconds.

Remark 1

53. These corollaries are generally in agreement with the observations, by
which we know that the movement of the earth’s pole in the longitude is
retrograde, and that every year this precession is equivalent to 50′′ or 51′′.
Moreover Mr. Bradley has just discovered that the distance of the poles from
the equator and from the ecliptic is greatest when the ascending node is at
the beginning of Aries and smallest when this node enters into Libra and
that the greatest difference between the true distance and the mean is 9′′.
Also, what he observed in relation to the inequalities of the longitude is in
complete agreement with what the theory just derived. Now as we do not
know the true value of the quantities λ and m, these observations will enable
us to determine these values, since we must have:

594, 371λ + 587, 113λm = 50
1

2

′′

and
158, 718λm = 9′′

from there we conclude

594, 371 + 587, 113m

158, 718
=

101

18

and hence m is more or less equal to 2. Here we should note that if the
greater aberration in latitude were 11′′ instead of 9′′, we would find m = 4.
Now m : 1 denotes the relation of the force of the moon to that of the sun
in the production of the tides, and Newton had established this relation as
4 or 41

2
to 1. Mr. Daniel Bernoulli made this relationship much smaller by

determining m as only 21
2
; and this value is much closer to the one I have

just found than to that of Newton, which is new proof not only for the belief
of Mr. Bernoulli, which seems moreover very well founded, but also for the
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theory by which I have just determined the movement of the pole of the
earth. For if we had found for m a value, whether too large of too small, it
would have been a clear sign that the movement of the pole does not depend
solely on the forces of the sun and the moon, but on centrifugal forces, not
canceling themselves perfectly, also contributing something to it.

Remark 2

54. However it does not seem that we can diminish the value of m beyond
21

2
, and it is rather probable that the greatest difference between the true

latitude and mean latitude of the pole of the earth is a little larger than
9′′. Also Mr. Bradley himself acknowledged that this determination is not
so precise that he could find it within a half-second. Thus, let us suppose
according to Mr. Bernoulli that m = 21

2
, and the greatest difference between

the mean latitude and true latitude of the pole of the earth will become
= 9.75 or 93

4
seconds. Now if we had supposed the mean annual movement

of the pole only 50′′ instead of 501
2

′′
, we would have found 9.62 instead of

9.75, from which it seems that we may confidently agree with Mr. Bradley
that the annual movement of the pole of the earth is 50.3′′, and with Mr.
Bernoulli that m = 21

2
. From there we will find that value of λ to be

λ =
50.3

594, 371 + 587, 113 · 21
2

=
1

40, 997

and this value is considerably smaller than that which results from the ho-
mogenous earth hypothesis. From that it follows that the value of

a3(ee − aa) + να3(εε − αα)

a5 + να5
is smaller than

ee − aa

aa

in the ratio of 40, 997 to 24, 421 or of 5 to 3. And from there we must conclude
that the earth is not homogenous, but that it has a much denser core at its
center. Let us suppose that the his core spherical, and since ee−aa = 1

100
aa,

we will have
1

100
a5

a5 + να5
:

1

100
= 3 : 510, or 2a5 = 3να5.

Therefore if the density of this core were known, we could thus determine the
radius of the core. Let us suppose, for example, that the core were 10 times

105:3 in the original edition. Correction due to Courvoisier.
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denser than the crust, and we will have ν = 9, and α5 = 2
27

a5 or α = 3
5
a.

This does not seem contrary at all to observations which look at the interior
of the earth; it seems instead that such a core is very consistent with the
principles of physics.

Problem 8

55. For an arbitrary given time to determine the longitude and latitude of
the north pole of the earth, measuring the longitude from a given fixed star.

Solution

Having drawn up the table for the mean retrograde movement in longitude
of the pole at a rate of 50.3′′ per year, we will find for each given time the
mean longitude of the pole, measured from a given fixed star such as 1 ∗ Υ,
provided that this longitude has been determined by observation at a given
epoch. Therefore let η be this mean longitude of the pole from 1 ∗ Υ for the
given time, and ϑ will be the mean distance of this pole from the pole of the
elliptic, which is estimated as 23◦28′30′′. Then let x be the true longitude of
the pole from 1∗Υ, and y the true distance to the pole of the ecliptic. Given
this, since we have λ = 1

40,997
and λm = 1

16399
, the formulas that will give us

the true location of the pole for the given time will be:

x = ζ + 18.08′′ sin u + 1.13′′ sin 2p

y = ϑ + 9.68′′ cos u + 0.50′′ cos 2p

where u denotes the longitude of the ascending node of the moon counted
from the vernal equinox, and p is the longitude of the sun counted from
the same origin. For as we already have the mean longitude of the pole,
we will also have that of the equinoctial point, which precedes that by 3
signs. Now we see clearly that it is sufficient to know the longitudes u and
p approximately, and that the error would be insignificant even if we should
be mistaken by several degrees.

Corollary 1

56. Since x denotes the longitude of the pole from the first star of Aries, and
since x corresponds to the point of the summer solstice, x− 90◦ will express
the longitude of the point of the vernal equinox from 1 ∗ Υ. And from this
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knowing the mean longitude of 1∗Υ from the equinox for a given time, which
is presumed to be 50.3′′ per year, which I will set = E, for the same time the
true longitude of the first star of Aries, the beginning of the sign of the ram,
will be

E − 18.08′′ sin u − 1/13′′ sin 2p.

Corollary 2

57. We may thus regard the equinoctial point as fixed in the Heavens and
attribute its movement to the fixed stars in the opposite direction, and hence
the longitude of the fixed stars will not only increase regularly by 50.3′′ per
year, but it will be moreover subjected to a double inequality, of which one
depends on the longitude of the ascending node of the moon, and the other
on the longitude of the sun.

Corollary 3

58. The primary effect, which causes the stars to advance 50.3′′ in longi-
tude per year, is the one which is called in astronomy the precession of the
equinoxes, but the rules that the astronomers have derived from it only give
the mean longitude of the stars. Now having found by this method the mean
longitude of an arbitrary star, which is = L, its true longitude will be

L − 18.08′′ sin u − 1.13′′ sin 2p.

Corollary 4

59. Since y denotes the distance between the poles of the earth and the
ecliptic, this will also be the value of the obliquity of the ecliptic. Thus letting
the mean obliquity of the ecliptic = ϑ, which we estimate at 23◦28′30′′, for
each proposed time the true obliquity of the ecliptic will be

ϑ + 9.68′′ cos u + 0.50 cos 2p.

Now it is evident that if the mean obliquity of the ecliptic were a little larger
or a little smaller, the corrections would yet remain the same. Thus, if
because of other forces the mean obliquity of the ecliptic were variable these
same corrections would nevertheless give the true value, provided that we
always put for ϑ the mean obliquity.
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Corollary 5

60. The latitude of the fixed stars will not undergo any change from this
side, since their distance from the ecliptic always remains the same. Thus
the mobility of the pole of the earth only produces two effects, of which the
first consists in the variation of the longitude of the fixed stars, and the other
in the variation of the obliquity of the ecliptic.

Remark 1

61. Having properly established the true quantity of the mean precession of
the equinoxes by comparing ancient and modern observations, it will be easy
to determine, for any given time, the mean longitude of all the fixed stars,
given that we have properly determined the longitude once. I will suppose
therefore that we know the mean longitude of a star at a given time and that
we want to determine the true longitude of it for the same time. This will
be done by the method of two equations that the following two tables will
supply.

First correction to the mean longitude of the fixed stars
Given the longitude of the ascending node of the moon

Sign 0 Sign 1 Sign 2 Sign 3 Sign 4 Sign 5
subtract subtract subtract subtract subtract subtract

0◦ 0′′, 0′′′ 9′′, 2′′′ 15′′, 40′′′ 18′′, 5′′′ 15′′, 40′′′ 9′′, 2′′′ 30
5◦ 1′′, 34′′′ 10′′, 22′′′ 16′′, 23′′′ 18′′, 0′′′ 14′′, 50′′′ 7′′, 38′′′ 25
10◦ 3′′, 8′′′ 11′′, 37′′′ 17′′, 0′′′ 17′′, 48′′′ 13′′, 51′′′ 6′′, 11′′′ 20
15◦ 4′′, 41′′′ 12′′, 47′′′ 17′′, 19′′′ 17′′, 29′′′ 12′′, 47′′′ 4′′, 41′′′ 15
20◦ 6′′, 1′′′ 13′′, 51′′′ 17′′, 48′′′ 17′′, 0′′′ 11′′, 37′′′ 3′′, 8′′′ 10
25◦ 7′′, 38′′′ 14′′, 50′′′ 18′′, 0′′′ 16′′, 23′′′ 10′′, 22′′′ 1′′, 34′′′ 5
30◦ 9′′, 2′′′ 15′′, 40′′′ 18′′, 5′′′ 15′′, 40′′′ 9′′, 2′′′ 0′′, 0′′′ 0

add add add add add add
Sign 11 Sign 10 Sign 9 Sign 8 Sign 7 Sign 6

Second correction to the mean longitude of the fixed stars
Given the longitude of the sun
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Sign 0 Sign 1 Sign 2 Sign 3 Sign 4 Sign 5
subtract subtract subtract add add add

0◦ 0′′, 0′′′ 0′′, 59′′′ 0′′, 59′′′ 0′′, 0′′′ 0′′, 59′′′ 0′′, 59′′′ 30
5◦ 0′′, 22′′′ 1′′, 4′′′ 0′′, 52′′′ 0′′, 12′′′ 1′′, 4′′′ 0′′, 52′′′ 25
10◦ 0′′, 23′′′ 1′′, 7′′′ 0′′, 44′′′ 0′′, 23′′′ 1′′, 7′′′ 0′′, 44′′′ 20
15◦ 0′′, 34′′′ 1′′, 8′′′ 0′′, 34′′′ 0′′, 34′′′ 1′′, 8′′′ 0′′, 34′′′ 15
20◦ 0′′, 44′′′ 1′′, 7′′′ 0′′, 23′′′ 0′′, 44′′′ 1′′, 7′′′ 0′′, 23′′′ 10
25◦ 0′′, 52′′′ 1′′, 4′′′ 0′′, 12′′′ 0′′, 52′′′ 1′′, 4′′′ 0′′, 12′′′ 5
30◦ 0′′, 59′′′ 0′′, 59′′′ 0′′, 0′′′ 0′′, 59′′′ 0′′, 59′′′ 0′′, 0′′′ 0

add add add subtract subtract subtract
Sign 11 Sign 10 Sign 9 Sign 8 Sign 7 Sign 6

Corollary 6

62. The true longitude of the fixed stars will thus be the greatest with respect
to the mean, when the ascending node of the moon is found at the beginning
of Capricorn, and when the sun is either in Leo 15◦ or in Aquarius 15◦. And
then the difference between the true longitude and the mean longitude will
be of 19′′13′′′.

Corollary 7

63. Now the true longitude of the fixed stars will be the smallest with respect
to the mean longitude when the ascending node is at the beginning of Cancer,
and when the sun is found either in Taurus 15◦ or in Scorpio 15◦. Then
the difference between the true longitude and the mean longitude will be
of 19′′13′′′. Therefore the difference between the largest and smallest true
longitude could rise to 38′′26′′′.

Corollary 8

64. But when the ascending node is found in the one of equinoctial points
or when the sun is either in the equinoxes or in the solstices, then the mean
longitude of the stars will not differ at all from the true value. This will
therefore be the best time to observe the mean longitude of the stars.
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Remark 2

65. It will be the same for the obliquity of the ecliptic, which will also require
a double correction, of which the one depends on the location of the ascending
node of the moon, and the other on the location of the sun, from which I
have formed the following two tables.

First correction to the mean obliquity of the ecliptic
Given the longitude of the ascending node of the moon

Sign 0 Sign 1 Sign 2 Sign 3 Sign 4 Sign 5
add add add subtract subtract subtract

0◦ 9′′, 41′′′ 8′′, 24′′′ 4′′, 50′′′ 0′′, 0′′′ 4′′, 50′′′ 4′′, 24′′′ 30
5◦ 9′′, 39′′′ 7′′, 57′′′ 4′′, 5′′′ 0′′, 50′′′ 5′′, 33′′′ 8′′, 45′′′ 25
10◦ 9′′, 32′′′ 7′′, 25′′′ 3′′, 19′′′ 1′′, 41′′′ 6′′, 14′′′ 9′′, 5′′′ 20
15◦ 9′′, 21′′′ 6′′, 51′′′ 2′′, 30′′′ 2′′, 30′′′ 6′′, 51′′′ 9′′, 21′′′ 15
20◦ 9′′, 5′′′ 6′′, 14′′′ 1′′, 41′′′ 3′′, 19′′′ 7′′, 25′′′ 9′′, 32′′′ 10
25◦ 8′′, 45′′′ 5′′, 33′′′ 0′′, 50′′′ 4′′, 5′′′ 7′′, 57′′′ 9′′, 39′′′ 5
30◦ 8′′, 24′′′ 4′′, 50′′′ 0′′, 0′′′ 4′′, 50′′′ 8′′, 24′′′ 9′′, 41′′′ 0

add add add subtract subtract subtract
Sign 11 Sign 10 Sign 9 Sign 8 Sign 7 Sign 6

Second correction to the mean obliquity of the ecliptic
Given the longitude of the sun

Sign 0 Sign 1 Sign 2 Sign 3 Sign 4 Sign 5
add add subtract subtract subtract add

0◦ 30′′′ 15′′′ 15′′′ 30′′′ 15′′′ 15′′′ 30
5◦ 30′′′ 10′′′ 19′′′ 30′′′ 10′′′ 19′′′ 25
10◦ 28′′′ 5′′′ 22′′′ 28′′′ 5′′′ 22′′′ 20
15◦ 25′′′ 0′′′ 25′′′ 25′′′ 0′′′ 25′′′ 15
20◦ 22′′′ 5′′′ 28′′′ 22′′′ 5′′′ 28′′′ 10
25◦ 19′′′ 10′′′ 30′′′ 19′′′ 10′′′ 30′′′ 5
30◦ 15′′′ 15′′′ 30′′′ 15′′′ 15′′′ 30′′′ 0

add subtract subtract subtract add add
Sign 11 Sign 10 Sign 9 Sign 8 Sign 7 Sign 6
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Corollary 9

66. The obliquity of the ecliptic therefore will be the largest when the as-
cending node of the moon is found in the point of the vernal equinox and
when the sun is also in the equinoxes. For then the true obliquity of the
ecliptic will surpass the mean by 10′′11′′′.

Corollary 10

67. Now the obliquity of the ecliptic will be the smallest when the ascending
node of the moon is in the point of the autumnal equinox, and when the sun
is found in one or the other solstice. Then the true obliquity of the ecliptic
will be surpassed by the mean by 10′′11′′′, and the variations of the obliquity
of the ecliptic will rise to 20′′22′′′.

Corollary 11

68. But if the ascending node is in one or the other solstice, and if the
location of the sun is either Taurus 15◦ or Leo 15◦ or Scorpio 15◦ or Aquarius
15◦ , then the true obliquity of the ecliptic will not differ at all from the mean
obliquity.

Problem 9

69. To determine the true quantity of the precession of the equinoxes during
the space of a given year.

Solution

Let us look for the longitude of the ascending node for the middle of the year
during which we wish to know the precession of the equinoxes, and let s be
this longitude of the node, which corresponds to the middle of the proposed
year. Since the annual movement of the nodes is 19◦20′, at the beginning of
our year the longitude of the ascending node will have been s + 9◦40′, and
at the end s + 9◦40′, and since the longitude of the sun is the same at the
beginning of the year as at the end, it will contribute nothing to the annual
precession.
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Therefore at the beginning of the year the longitude of the star having
been

L − 18.08′′ sin(s + 9◦40′) − 1.13′′ sin 2p

at the end of this year it will be

L + 50.3′′ − 18.08′′ sin(s − 9◦40′) − 1.13′′ sin 2p.

hence the precession of the equinoxes during this year

= 50.3′′ − 18.08′′ sin(s − 9◦40′) + 18.08′′ sin(s + 9◦40′).

This precession will thus be

50.3′′ + 36.16′′ cos s sin 9◦40′

or 50.3′′ + 6.07′′ cos s.
Therefore having determined the longitude of the ascending node for the

middle of the proposed year, we will easily find how much the equinoxes will
recede during each year.
Q.E.D.

Corollary 1

70. The precession of the equinoxes will thus be greatest in those years during
the course of which the ascending node is found at the beginning of Aries,
and in these years the precession of the equinoxes will be 56.37′′ or 56′′22′′′.

Corollary 2

71. Now the precession of the equinoxes will be the least in those years,
during the course of which the ascending node is found at the beginning of
Libra, and then the precession will only be 44.23′′ or 44′′14′′′. Therefore the
difference between the greatest and least annual precession will be of 12′′8′′′.

Corollary 3

72. If we know the longitude of the ascending node for the beginning of the
proposed year, and if we let it = u, and since u = s + 9◦40′, we will have
s = u − 9◦40′, and the precession of the equinoxes during this year will be

50.3′′ + 6.07′′ cos(u − 9◦40′).
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Remark

73. From this I have calculated the following table, by which we will find
the precession of the equinoxes for each year, for the beginning of which we
know the longitude of the ascending node of the moon.

Tabulation of the quantity of the precession of
the equinoxes for each given year

Given the longitude of the ascending node
of the moon at the beginning of the year

Sign 0 Sign 1 Sign 2 Sign 3 Sign 4 Sign 5
(Aries) (Taurus) (Gemini) (Cancer) (Leo) (Virgo)

0◦ 56′′, 17′′′ 56′′, 0′′′ 54′′, 12′′′ 51′′, 20′′′ 48′′, 14′′′ 45′′, 39′′′

5◦ 56′′, 21′′′ 55′′, 48′′′ 53′′, 48′′′ 50′′, 49′′′ 47′′, 44′′′ 45′′, 20′′′

10◦ 56′′, 22′′′ 55′′, 34′′′ 53′′, 20′′′ 50′′, 18′′′ 47′′, 16′′′ 45′′, 2′′′

15◦ 56′′, 21′′′ 55′′, 18′′′ 52′′, 52′′′ 49′′, 48′′′ 46′′, 48′′′ 44′′, 48′′′

20◦ 56′′, 17′′′ 54′′, 57′′′ 52′′, 22′′′ 49′′, 16′′′ 46′′, 24′′′ 44′′, 36′′′

25◦ 56′′, 10′′′ 54′′, 30′′′ 51′′, 52′′′ 48′′, 44′′′ 45′′, 59′′′ 44′′, 26′′′

30◦ 56′′, 0′′′ 54′′, 12′′′ 51′′, 20′′′ 48′′, 14′′′ 45′′, 39′′′ 44′′, 19′′′

Continuation of this table for the southern signs

Sign 0 Sign 1 Sign 2 Sign 3 Sign 4 Sign 5
(Libra) (Scorpio) (Sagittarius) (Capricorn) (Aquarius) (Pisces)

0◦ 44′′, 19′′′ 44′′, 36′′′ 46′′, 24′′′ 49′′, 16′′′ 52′′, 22′′′ 54′′, 57′′′

5◦ 44′′, 15′′′ 44′′, 48′′′ 46′′, 48′′′ 49′′, 48′′′ 52′′, 52′′′ 55′′, 18′′′

10◦ 44′′, 14′′′ 45′′, 2′′′ 47′′, 16′′′ 50′′, 18′′′ 53′′, 20′′′ 55′′, 34′′′

15◦ 44′′, 15′′′ 45′′, 20′′′ 47′′, 44′′′ 50′′, 49′′′ 53′′, 48′′′ 55′′, 48′′′

20◦ 44′′, 19′′′ 45′′, 39′′′ 48′′, 14′′′ 51′′, 20′′′ 54′′, 12′′′ 56′′, 0′′′

25◦ 44′′, 26′′′ 45′′, 59′′′ 48′′, 44′′′ 51′′, 52′′′ 54′′, 36′′′ 56′′, 10′′′

30◦ 44′′, 36′′′ 46′′, 24′′′ 49′′, 16′′′ 52′′, 22′′′ 54′′, 57′′′ 56′′, 17′′′

Corollary 4

74. Let us take for example the year 1750, at the beginning of which the
location of the ascending node is found at Capricorn 10◦17′. Therefore from
the first of January 1750 to the first of January 1751 the precession of the
equinoxes will be 50′′18′′′, or it will be about equal to the average annual
precession.
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Corollary 5

75. Since at the beginning of the year 1746 the position of the ascending node
was close to the vernal equinox, known to be at Pisces 27◦40′, the annual
precession of the equinoxes for the year 1745 and the following years will
be11:

Year Annual Precession Year Annual Precession
1745 56′′20′′′ 1765 56′′ 0′′′

1746 56′′15′′′ 1766 55′′ 0′′′

1747 55′′25′′′ 1767 53′′20′′′

1748 54′′10′′′ 1768 51′′40′′′

1749 52′′20′′′ 1769 49′′40′′′

1750 50′′20′′′ 1770 47′′30′′′

1751 48′′20′′′ 1771 45′′40′′′

1752 46′′30′′′ 1772 44′′50′′′

1753 45′′10′′′ 1773 44′′15′′′

1754 44′′20′′′ 1774 44′′20′′′

1755 44′′15′′′ 1775 45′′10′′′

1756 44′′50′′′ 1776 46′′30′′′

1757 45′′50′′′ 1777 48′′30′′′

1758 47′′40′′′ 1778 50′′20′′′

1759 49′′40′′′ 1779 52′′20′′′

1760 51′′50′′′ 1780 54′′10′′′

1761 53′′30′′′ 1781 55′′30′′′

1762 55′′10′′′ 1782 56′′15′′′

1763 56′′ 0′′′ 1783 56′′20′′′

1764 56′′22′′′ 1784 55′′40′′′

We can use this table to see how much the observations on the mobility
of the axis of the earth will be in agreement with this Theory.

11In the Opera Omnia, the annual precession given for 1774 is 40′′20′′′, but it has been
corrected here.
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