
On the Cuspidal Point of the Second Kind
of Monsieur le Marquis de l’Hôpital∗

Leonhard Euler†

1. I have already pointed out in several pieces, which I have had the honor
of presenting to the Royal Academy, that even Geometry is not exempt from
controversies and apparent contradictions, although we quite often maintain
the contrary. But I have also remarked on this great advantage of Geome-
try: that these difficulties may be smoothed out, so that not the slightest
doubt remains, as long as we thoroughly examine the circumstances of the
controversial subject. In this treatise, I will once again address the Assembly
on the matter of a controversy in pure Geometry, which concerns a certain
kind of cuspidal point, resembling the beak of a bird, and formed from two
branches of a curve, whose concavities turn in the same direction, as opposed
to the ordinary cuspidal point, where the branches curve in opposite senses.

2. Mr. le Marquis de l’Hôpital, in his Analyse des infiniments petits1

calls such cuspidal points of the bird’s of the second kind, and he holds that
there are infinitely many curves, both algebraic and transcendental, which
are endowed with such a cuspidal point. He proves this in the following way.
Let (Fig. 1) ABC be an arbitrary curve which has a point of inflection at B.
Suppose also that we wrap a thread around this curve, which we then unwrap
by pulling it successively from the point A, until it becomes detached at the
inflection point B, and the extremity A will describe, by this evolution, the
arc AD, to which the detached thread BD will be perpendicular to its radius
of curvature, which we know by the theory of evolutes. But if we continue
this evolution beyond the point B, the thread BD will turn back and, coming
to the position MN , its extremity will describe the arc DN , which is, as a

∗E169 - Opera Omnia, Ser. I, vol. 27, p. 236-252, originally in Mémoires de l’académie
des sciences de Berlin 5 (1749), 1751, p. 203-221.
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1See article 109, on p. 102.
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consequence, the continuation of the arc AD. Now these two arcs AD, DN ,
which at the point D form an infinitely small angle, are concave in the same
direction. Thus, the curve ADN described by the evolution of the line ABC
will have, at the point D, a cuspidal point of the second kind, as the Marquis
de l’Hôpital calls it.

3. However sound this demonstration may appear, Mr. Guà de Malves2,
in his treatise Usage de l’Analyse de DesCartes pour découvrir les propriétés
des lignes géometriques de tous les Ordres, is of an entirely different opinion,
and holds that there are no curves which, having a branch extending from
A to D, may suddenly reverse direction and come to the point N , without
also changing curvature; that is, without becoming convex, having previously
been concave in the same direction. As for the proof that Mr. le Marquis de
l’Hôpital gives, he does not deny that the curve formed in this way has the
represented figure, but he holds that the branch DN is not the continuation of
the branch AD, even though it is described by the same motion of evolution.
He is thus obliged to say, that one may not judge the continuity of a curve
by the continuity of its description. Such an exception will no doubt appear
rather strange, and I confess that, were it well founded, it would overturn
most of the proofs, by which we believe ourselves able to determine with
certainty the shape of curved lines.

4. Mr. Guà recognized only analytic equations, from which one may
draw a precise understanding of the shape of the curved line, of the number

2Jean Paul de Guà de Malves (1712-1785). The book cited here was published in 1740.
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of branches, and of their continuity. He believes to have demonstrated in
his treatise that every time one finds oneself with such a cuspidal point in a
curved line, one is nonetheless mistaken, and if one completes the description
following the equation that expresses its nature, the figure is always such as
is represented in Figure 2. That is, that the bird’s beak will be a pair ADN
and aDn, and that it is not the arc DN that is the coninuation of the arc AD,
but the arc Da, so that the point D is but the intersection of two branches,
ADa and NDn, which meet in D in an infinitely small angle, and which are
concave in the same direction. One could also say that these are two branches
of the same curved line, ADn and NDa, which meet at D, and so it will be
uncertain whether the arc Dn or the arc Da will be the continuation of the
arc AD.

5. To prove this thesis, he draws from the point D (Fig. 3) the tangent
EDe, which he takes as the axis upon which he places the abcissa DP = x
and the ordinate PM = y. Now, whatever the equation for the curve, if
we take the abcissa x to be extremely small, the value of y may always be
expressed by a convergent series of this form:

y =
xx

2a
± Axm ± Bxn ± Cxk ± etc. ,
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where the exponents m, n, k, etc., are increasing, and may be either whole
numbers or fractional. And if there are fractions whose denominators are
even numbers, the values of these terms will be ambiguous, and this will be
the case wherein several branches of the curve meet the axis Ee at the point
D. Now the first term, with the lowest power of x, will be xx

2a
, if the radius

of curvature at D is taken to be = a.
6. Given all this, he lets the abcissa x be infinitely small, in order to

determine the course of the curve at the point D and in this case, he says,
the terms Axm, Bxn, Cxk, etc., all vanish with respect to the first, xx

2a
, as

their exponents are greater than 2. Thus, at the point D, all that remains
of the curve is the equation y = xx

2a
, which expresses the course or path that

the curve follows on this side and that of the point D, as long as the abcissa
x remains infinitely small. Now in this case, it is clear that the equation
y = xx

2a
gives the same value, whether x be taken positive or negative, and

from this he concludes, that the curve will always have the form MDm near
the point D and, as a consequence, the arc AD must take its continuation
towards Dm. This should be understood as long as the curvature at D is
finite, as it is in our case; for if the curvature should be infinite or infinitely
small, the argument loses its validity.

7. These are the arguments with which Mr. Guà de Malves opposes the
view of Mr. le Marquis de l’Hôpital on cuspidal points of the second kind,
and if one weighs the arguments on each side, one finds them so strong that it
seems almost inevitable to find a contradiction between the description made
by an evolution, and by the equation of a curve. The one quite clearly tells
us that the arc AD (Fig. 2) must turn back by passing along DN , whereas
the other persuades us that this continuation must absolutely be along Dn or
Da. Nevertheless, I will show by incontestable arguments, that there is not
the least dissension between the mechanical description and the calculus, but
that there has slipped into the reasoning of Mr. Guà, sound though it might
otherwise appear, a small oversight. This being noted, the contradiction will
entirely disappear.

8. For although it is true that in an equation such as

y = Axα + Bxβ + Cxγ + Dxδ + etc.,

where the exponents α, β, γ, δ, etc., are increasing positive numbers, one
may ignore the subsequent terms with repsect to the first, when one supposes
x to be infinitely small, whether positive or negative, and that in this case,
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one need only consider the equation y = Axα, nevertheless one must note
with care, that this omission of terms may not take place, except in the case
where all of the terms have real values, granted that they be infinitely small.
For if a single one of the rejected terms be imaginary, the entire expression,
and as a consequence the value of y, will be also, and we would make a great
error by replacing it with y = Axα, which is to say, a real quantity. And thus
the customary rule, by which one may ignore subsequent terms with respect
to the first one, requires this restriction: that the omitted terms may not be
imaginary.

9. Mr. Guà de Malves did not pay attention to this absolutely necessary
restriction, and this was the source of his apparent contradiction to the exis-
tence of the cuspidal point of the second kind. To make this even more clear,
consider the equation

y = x + xx
√−1.

We see, first of all, that the value of y is always imaginary, except in the case
x = 0, in which case we also have y = 0. Therefore, this equation places but
a single point, situated on the axis, at the origin of the abcissas x. But had
we wished to determine the curve expressed by this equation, following the
method of Mr. Guà, by supposing the abcissa x to be infinitely small, we
would need only consider the equation y = x, and we would conclude that
this curve is given near the origin by the straight line expressed by y = x,
which would however be contrary to the truth. Yet this conclusion would
be quite correct if the coefficient of xx, instead of being imaginary, were any
real quantity.

10. Now it may happen that a branch of the curve vanishes, or becomes
imaginary, and yet no term of the equation is overtly affected by an imaginary
quantity. For, let us consider the curve whose equation is

y = x + x
√

x,

and suppose x to be ifinitely small, either negative or positive. In the first
case, the term x

√
x being real and infinitely smaller that x, we may ignore

it and have y = x, which represents the beginning of the curve in the region
of positive abcissas. But as soon as we take x to be negative, even though
infinitely small, the term x

√
x becomes imaginary, making the value of y also

imaginary, and beginning from here it is no longer permissible to imagine the
equation y = x in place of y = x + x

√
x. This curve does not, therefore,

extend into the region of negative abcissas, but has two branches in the
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positive direction, according to the double value of ±x
√

x, which form a
cuspidal point of the first kind. It is clear that this is the second cubic
parabola.

11. A similar ordinary cuspidal point will also be found on this more
general equation:

y = αx + βx1+ m
n ,

whenever m is a postive odd number and n a positive even number. For in
this case, the value of the term

βx1+ m
n

will be ambigous, and we will have

y = αx ± βx1+ m
n .

To find the shape (Fig. 4) of this curve, one need only draw the straight line
AL for which, given the abcissa AP = x, the ordinate PL becomes = αx.
Then, one takes on PL the extendsion

LM = LN = βx1+ m
n ,

which will be infinitely smaller than x when x is infinitely small, and the
curve will pass through the points M and N , and join up at the point A.
Therefore the curve will have two branches AM and AN , each of which is
convex towards AL and which form, as a consequence, a cuspidal point MAN
of the first kind, for this curve does not extend into the region of negative
abcissas, since taking x to be negative, the ordinate y becomes imaginary.

12. The same occurs with those curves, which appear to Mr. Guà not
to admit a cuspidal point of the second kind. One need only consider the
equation

y = αxx ± βxx
√

x,
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which becomes imaginary as soon as one makes x negative, and from this it
is certain that this curve has no part in the region of negative abcissas. To
determine the shape of this curve (Fig. 5), one need only construct on the axis
AP a parabola AL, which correpsonds to the equation y = αxx and, letting
AP = x, we have PL = αxx. If we then let LM = LN = βxx

√
x, then the

points M and N are on the curve we seek. And supposing further that x be
infinitely small, the parts LM and LN are infinitely small compared to PL,
and both branches AM and AN will meet the origin A with the parabola
AL, and will have the same curvature and will, as a consequence, be convex
in the same direction with respect to the axis AP . Thus, these two branches
MA and NA will form a true cuspidal point of the second kind at A.

13. From this it is clear that, even if we take the abcissa x to be infinitely
small, we may not neglect the term βxx

√
x with respect to αxx, except when

x is taken to be positive. And in the case where x is negative, the equation
y = αxx cannot be used for

y = αxx ± βxx
√

x,

for this indicates a real value of y, which is instead imaginary, because of the
second term. As a consequence, the arguments of Mr. Guà do not apply in
this case, for he holds that the equation y = αxx may be used to determine
the shape pf the curve near the point A, from which it would follow without
a doubt that the curve extends into the region of negative abcissas. How-
ever, the neglected term βxx

√
x tells us rather that the ordinates y become

imaginary. It is therefore not permissible to neglect this term with respect to
αxx, for its value does not become imaginary, whereas it should, even when
x is infinitely small.

14. Having thus found a curve that has a cuspidal point of the second
kind, it becomes easy to conceive of an infinity of other curves, in which one
may fina similar cuspidal point. For one may add as many powers of x as one
wishes to the equation y = αxx±βxx

√
x, as long as these powers be positive
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numbers greater than 2, for all such terms will vanish with respect to the first,
αxx, as long as one takes x to be infinitely small, yet positive. However, for
negative values of x, the single term βxx

√
x renders this hypothesis invalid.

Indeed, one may even add the term xxP , to get

y = αxx ± βxx
√

x + xxP,

where P represents an arbitrary function of x, which vanishes when x = 0.
15. One should note that all such curves, which are described by this

general equation, will have finite curvature at the cuspidal point A, that is
the radius of the evolute y will be finite; just as occurs with the curves that
Mr. le Marquis de l’Hôpital constructed to demonstrate the existence of the
cuspidal point of the second kind. It is appropriate to make note here of
several very simple curves of this type

y = αxx + βxx
√

x of the 5th degree
y = αxx + βx3

√
x of the 7th degree

y = αxx + βx4
√

x of the 9th degree
y = αxx + βx5

√
x of the 11th degree

etc.,

which all have a cuspidal point of the second kind at the origin, where x = 0,
and the radius of the evolute at this point is a finite quantity.

16. One may render these formulas even more general without increasing
the number of terms, by using a different radical sign, whose exponent is an
even number, so that its value is ambiguous. Thus, we have these equations:

or

y = αxx + βxx 4
√

x y = αxx + βxx 6
√

x

y = αxx + βxx
4
√

x3 y = αxx + βxx
6
√

x5

y = αxx + βx3 4
√

x y = αxx + βx3 6
√

x

y = αxx + βx3 4
√

x3 y = αxx + βx3 6
√

x5

etc. etc.

All of these formulas are included in the general formula

y = αxx + βx2+ m
n ,

where m is any positive odd number and n is any positive even number. The
radius of the evolute will be finite at the cuspidal point in all of these curves.
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17. Instead of the first term αxx, one may also take a higher power of
x, and then the radius of the evolute at the cuspidal point will be infinitely
large, as in the formulas

y = αx3 + βx3+ m
n

y = αx4 + βx4+ m
n

y = αx5 + βx5+ m
n

etc. (1)

or, more generally,
y = αxk + βxk+ m

n ,

where k is an integer greater than 1 and the values of m and n are as in the
previous paragraph. For if k = 1, the cuspidal point will be of the first kind.
It is not in fact necessary that k be a whole number; it may be a fractional
number, as long as the power xk does not take on an ambiguous value, which
may be either postive or negative.

18. The exponent k may also be a fractional number less than 2, as long
as it be greater than 1. In this case, the radius of the evolute at the point A,
where the cuspidal point of the second kind is located, will be infinitely small.
One may even let k be smaller than unity, as long as the power xk does not
become ambiguous; this will be the case if k is a fraction whose denominator
is odd. But here the tangent to the curve (Fig. 6) at the cuspidal point
A will be perpendicular to the axis AP , in contrast to the preceding cases,
where it lies along the axis AP itself. In this case, one must note that the
radius of the evolute at the point A will be finite only if k = 1

2
; it will be

infinitely small if k > 1
2

and infinitely large is k < 1
2
. Thus, the equation

y = α 3
√

x + β 2
√

x
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represents a curve MAN , which has a cuspidal point of the second kind at
A, such that the radius of the evolute is infinitely large.

19. It is also possible that the exponent k be = 1
2

without the power αx
1
2

becoming ambiguous, the ambiguity being destroyed by the following term,
as in the equation,

y = α
√

x + β
√

x
√

x,

where the first term
√

x is found in second, after the radical sign, so that
if we take the first term

√
x to be negative, the second becomes imaginary.

And in effect, since x in the second term has a higher power than in the first,
this curve also has a cuspidal point of the second kind at the origin. Now this
curve is of the fourth order, as the equation, with the radicals eliminated,
becomes

y4 − 2ααxy2 − 4αββxxy + α4xx − β4x3 = 0,

which seems to be the simplest curve endowed with such a cuspidal point.
20. For it is evident enough that such a cuspidal point cannot be located

in lines of the third degree, for it is always possible to draw a straight line near
such a cuspidal point which intersects the curve in 4 places, which requires
a fourth degree line, at very least. Now I soon will show that there are an
infinity of lines of the fourth degree, which have such a cuspidal point, and
it will still be uncertain which among these can be considered the simplest.
If we wish to consider only the equation between the coordinates in making
this judgement, the decision will be no more difficult, once we consider the
general equation of the fourth degree, which includes all curves of this type.
From this, it will be easy to see that in the fifth and higher degrees, the
number of such curves infinitely greater still, so that we will no longer have
the slightest doubt about the exisitence of this cuspidal point of the second
kind of Mr. le Marquis de l’Hôpital.

21. This last formula,

y = α
√

x + β
√

x
√

x,

differs from the others only insofar as the axis AP is perpendicular to the
curve, as opposed to the previous equations, where it is, in fact, tangent. For
one need only exchange y and x to have

x =
√

y +
√

y
√

y,
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and, taking squares of both sides, one has

xx = y + 2y 4
√

y + y
√

y.

So if x and y are infinitely small, we may ignore the last term, and letting
y = xx, the term y 4

√
y with this substitution becomes xx

√
x, so that

xx = y + xx
√

x or y = xx ± xx
√

x,

which is one of the preceding equations. Similarly, in the general equation
(§17)

y = αxk + βxk+ m
n ,

changing the coordinates x and y, we have

x = yk + yk+ m
n .

Now, as x and y are taken to be infinitely small, one has

yk = x and y = x
1
k ,

and so

x = yk + x1+ m
nk and y =

k
√

x − x1+ m
nk = x

1
k − 1

k
x

m+n
nk

or
y = αx

1
k + βx

m+n
nk ,

the equation of a curve which has a cuspidal point of the second kind at the
origin, perpendicular to the axis.
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22. From these formulas, it is easy to draw others, which have cuspidal
points of the second kind, whose tangents make an oblique angle with the
axis AP . To begin with the simplest cases, consider the equation

y = αx + βxx + γxx
√

x.

One sees, first of all, the the line AK (Fig. 7) is tangent to this curve at the
point A, where AP = x and PK = αx. Next, if one constructs the parabola
AL such that PL = αx + βxx, and one takes

LM = LN = γxx
√

x,

one obtains two branches AM and AN , which meet at A, which have there
the line AK as tangent, and whose curvature is the same as the parabola
AL, so that the convexity of both branches at A turn towards the axis AP .
Now, if the coefficient β is negative, the equation

y = αx − βxx + γxx
√

x.

will represent a cuspidal point MAN (Fig. 8), whose concavity will turn
towards the axis AP .

23. This formula may be rendered more general in the following manner:

y = αx + βxx + γx2+ m
n ,

taking m to be an odd number and n and even number. One may further
add as many other powers of x as one wishes, as long as their exponents are
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greater than 2, and in all these cases the radius of the evolute at the cuspidal
point will be finite. Now it will be infinitely large in the equation

y = αx + βxk + γxk+ m
n ,

if the exponent k is greater than two, and infinitely small if k is less than 2,
and yet greater than 1. We remark that k may even be fractional, as long as
the power xk does not become ambiguous.

24. To render these formulas more general still, let P be an arbitrary
funtion of x, which has no ambiguity, and which becomes = 0 in taking
x = 0. Further, let Q be an ambiguous function, which takes both a positive
and a negative value, or which is ±Q, but which becomes imaginary when x
is negative, or at least when such x is infinitely small, and, further, that Q
vanishes when x = 0. Given all this, it is clear that the equation

y = αx + xP (1 ± Q)

designates a curve which has a cuspidal point of the second kind at the origin.
This equation may be made even more general by taking

y = αx + xP (1 ± Q)n

where n is any number, either postive or negative. The function P may
even be ambiguous, as long as its ambiguity be destroyed by the function Q,
which is the case if it includes the term

√
P , since then P may not take on

a negative value.
25. One may render this formula yet more general by adding functions of

y to y, which vanish with repect to Px if one takes x to be infinitely small,
but I will not go that far, for this formula already suffices for finding an
infinity of such curved lines of all orders above the third. I wil remark only
that in taking

n = −1, P = x, Q =
√

x,

one obtains yet another curve of the fourth degree:

y =
αxx

1 ± β
√

x
,

which reduces to the equation

(y − αxx)2 = ββyyx,
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which appears to be simpler that the preceeding. Changing the constants for
the sake of uniformity, this becomes

aayy − 2ayxx + x4 = bxyy.

26. By means of these formulas, it would be easy enough to furnish an
infinity of curved lines, which have a cuspidal point of the second kind. But
the same cannot be said for the inverse question: that of judging whether or
not, given the equation of a curved line, that curve has such a cuspidal point.
To find an ordinary cuspidal point, the custom is to seek a point on the curve
where the second differential of one of the other of the coordinates either
vanishes or becomes infinite, and at such location, the radius of curvature is
either infinite, or equal to zero. But with the cuspidal point of the second
kind, the radius of curvature is sometimes finite, sometimes infinitely large,
and sometimes infinitely small, so that there is no specific property of the
second differential attached to such a point. Nor is there anything one can
conclude from the third or higher order differentials, for one may always
assign whatever values one wishes to the higher differentials at such a cuspidal
point.

27. Seeing, therefore, no certain method involving the properties of differ-
entials for discovering cuspidal points of this kind, one is obliged to content
oneself with finitary analysis, or to base one’s judgement on the equation of
the curve in finite terms. First of all, it is evident that such a cuspidal point
is a double point of the curve, and so one must begin by seeking all double
points on the given curve, and then the determination of whether such a
point is also a cuspidal point of the second kind will not be too difficult.
Now to locate the double points, one may make use of differentials for, hav-
ing differentiated the given equation between the coordinates x and y, one
would set equal to zero separately, both the terms containing dx, as well as
those containing dy, and the cases where both of these equations, as well as
the equation of the curve itself, have the same roots, will indicate all of the
double points to be found on the given curve.

28. Having discovered, by this method, all double points on the given
curve, one may determine whether or not each one is a cuspidal point of the
second kind, by the following method. One draws the axis as an arbitrary
straight line through the double point, whih is the origin. Starting from here,
one takes the abcissas, which are = x, and then the ordinates, which are = y,
are taken either perpendicular, or inclined at some arbitrary angle to, the
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axis. This being done, the equation of the curve between x and y will always
be such that there will be neither a constant term, nor terms involving the
first power of x and y, and so the equation which results will always take the
following general form:

0 = αx2 + βxy + γy2 + δx3 + εx2y + ζxy2 + ηy3 + θx4 + ιx3y + etc.

For any time an equation is lacking the constant term and the terms in x
and y, it is a certain indicator that the curve has a double point at the origin
x = 0 and y = 0; that is, the intersection of two branches.

29. Now one supposes x and y to be infinitely small, and derives the
equation

0 = αxx + βxy + γyy,

whose roots

y = −βx

2γ
± x

√
ββ

4γγ
− α

γ

denote the tangents of the branches which intersect one another at the origin.
Thus, if the double point is a cuspidal point, it is necessary that these two
tangents be equal, which occurs if ββ = 4αγ. As a consequence, if it is not
the case that ββ = 4αγ, or if the equation, when x and y are taken to be
infinitely small, does not have two equal roots, this is a certain indicator that
the double point is not a cuspidal point, neither of the first kind nor of the
second kind. So, this leaves only case of two equal roots for the determination
of whether or not there is a cuspidal point of the second kind.

30. But if the two tangents coincide, one may take this common tangent
as the axis, and then the equation for the curve will have the form

0 = Ayy + Bx3 + Cx2y + Dxy2 + Ey3 + Fx4 + Gxy3 + etc.

Now it must be determined whether the two branches turn their curvature in
the same direction. For this to occur, it must be the case that if x be taken
as infinitely small, then neglecting those terms that vanish with respect to
the others, the value of y does not become ambiguous. That is to say, it must
be the case that y = αxx, or y = αx3, or y = αx4, etc. If y = αxx, which
is the case where the radius of the development is finite, then we have, in
negelecting the powers larger than the fourth,

0 = α2Ax4 + Bx3 + αCx4 + Fx4,
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and thus it must be that B = 0 and that α does not take on a double value
in the equation

α2A + αC + F = 0,

or that CC = 4AF , so that

Ayy + Cxxy + Fx4

becomes a perfect square.
31. Therefore, as long as the equation does not have the form

(y − αxx)2 = Bxy2 + Cy3 + Dx3y + Exxyy + Fxy3 + etc.,

the curve will not have a cuspidal point of the second kind. But this does
not yet suffice; in addition, it is necessary that the lowest power of x in the
expression Bxy2 + Cy3 + etc. be odd, when one puts y = αxx. From this,
one sees easily enough that if the equation be

(y − αx3)2 = Bxy2 + etc.

this part must still have the same property, that after having set y = αx3,
the lowest power of x be odd and larger than x6, and this same maxim must
be be observed in more complicated equations, so that the determination of
the cuspidal point of the second kind will never be difficult when proceeding
in this way.

32. From this we may give a general equation for all fourth degree lines
which have a cuspidal point of the second kind, which is

(y − αxx)2 = Axy2 + By3 + Cx3y + Dxxyy + Exy3 + Fy4.

For at the origin, where y = αxx, the second member Axy2+By3+Cx3y+etc.
will become equal to

α2Ax5 + α3Bx6 + αCx5 + α2Dx6 + α3Ex7 + α4Fx8,

and from there, by neglecting the higher powers of x, the equation at the
origin will be

(y − αxx)2 = α(αA + C)x5 or y = αxx ± xx
√

α(αA + C)x.

Thus, as long as αA + C is not equal to zero, the lines described by the
given general equation will have a cuspidal point of the second kind. As a
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consequence, this property will hold any time it is not the case that C =
−αA, and so the cuspidal point will be of the type

y = αxx + βxx
√

x.

33. However, when C = −αA, there will also be the cases, where the
equation

(y − αxx)2 = Axy(y − αxx) + By3 + Dxxyy + Exy3 + Fy4

contains curves endowed with such cuspidal points. To find this case, one
need only assume that, x being infinitely small,

y = αxx + βx3 + γx3
√

x

and, after having determined β and γ, one arrives at the equation

(y − αxx − 1

2
Axy)2 = Byy(y − αxx) + Exy3 + Fy4

which once again includes an infinity of curves, all of which have such a
cuspidal point. Thus, with regards to the simplicity of the equation, there is
no doubt that the line

(y − αxx)2 = Axxyy or y =
αxx

1 −√
Ax

is the simplest that has this property.
34. In order to give an example of the method I have just explained, let

the following line of the fifth degree be proposed, whose equation is:(
1 − x

a

)
(aa − zz)2 = 2aaxx − x4 − 2xxzz.

To determine whether this curve has a cuspidal point of the second kind, I
first determine whether it has a double point. To this end, the given equation
gives, upon differentiation, in supposing x constant

−4
(
1 − x

a

)
(aa − zz)zdz + 4xxzdz = 0.

Now, in supposing z constant, we have

−dx

a
(aa − zz)2 = 4aaxdx − 4x3dx − 4xzzdx.
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These three equations are all satisfied by the values

x = 0 and z = ±a.

35. The curve therefore has two double points, and to determine the
nature of each, I let z = a− y, for it is clear from the given equation that, as
it has a diameter on which the abcissas x are taken, these two double points
are similar. Thus, in taking z = a − y, we have the equation

(
1 − x

a

)
yy(2a− y)2 = 2aaxx − x4 − 2xx(a − y)2,

or rather
4aayy − 4ay3 + y4 − 4axyy

+4xy3 − xy4

a
− 2aaxx + x4 − 4axxy + 2xxyy + 2aaxx = 0

and so

(2ay − xx)2 = 4ay3 + 4axyy − y4 − 4xy3 − 2xxyy +
xy4

a
.

From this it is clear that the curve has two cuspidal points of the second
kind.

36. To understand the shape the this curve, one need only find the value
of zz in the given equation, which one finds to be

zz = aa − axx ± x2
√

ax

a − x

or

zz = aa − xx
√

a√
a ∓√

x
.

From this, one finds the places where the ordinate z vanishes, by means of
the equation

aa
√

a ∓ aa
√

x − xx
√

a = 0 or (aa − xx)2 = a3x,

which has two real root, which are:

x = 0.5248876a and x = 1.4902162a.
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Further, the value of dz will be zero in the case

√
x =

4

3

√
a or x =

16

9
a = 1.7777a,

while the value of dx will be = 0 when z = 0, i.e. where the curve meets the
axis. But if we let x = 16

9
a, we will have either

zz =
283

27
aa or zz = − 67

189
aa,

of which the second value is imaginary. Finally, one observes that the curve
also has an asymptote perpendicular to the axis, where x = a.

37. This curve is represented in Figure 9, where CO is the axis, and at
the same time the diameter of the curve, and C is the origin of the abcissas
x. The points A, A are the two cuspidal points of the second kind, which
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we have just found, with AC = a. The two branches which give rise to
these cuspidal points make the lune ABADA. In addition, letting CE = a,
the straight line FEF , perpendicular to the axis CO, will be the asymptote
of the two other branches FHK and FHK which, from K, K diverge to
infinity, and having at H , H , their closest approach to the axis CO. One
also sees that one may draw a straight line, which cuts the curve at 5 points,
as is the nature of lines of the fifth order.
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