Preface vii
1 Analytic Functions and Morse Theory 1
ァ1 TheoremaboutMonodromy . . . . . . . . . . . . . . . . . . . . . . 1
ァ2 Morse Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
ァ3 TheMorse Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Normal Forms of Functions 13
ァ1 Tougeron Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
ァ2 Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
ァ3 Proofs of Theorems 2.3 and 2.4 . . . . . . . . . . . . . . . . . . . . 23
ァ4 Classification of Singularities . . . . . . . . . . . . . . . . . . . . . 29
3 Algebraic Topology of Manifolds 35
ァ1 Homology and Cohomology . . . . . . . . . . . . . . . . . . . . . . 35
ァ2 Index of Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . 40
ァ3 Homotopy Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Topology and Monodromy of Functions 57
ァ1 Topology of a Non-singular Level . . . . . . . . . . . . . . . . . . . 57
ァ2 Picard-Lefschetz Formula . . . . . . . . . . . . . . . . . . . . . . . 65
ァ3 Root Systems and CoxeterGroups . . . . . . . . . . . . . . . . . . 82
ァ4 BifurcationalDiagrams . . . . . . . . . . . . . . . . . . . . . . . . . 88
ァ5 Resolution and Normalization . . . . . . . . . . . . . . . . . . . . . 102
5 Integrals along Vanishing Cycles 117
ァ1 Analytic Properties of Integrals . . . . . . . . . . . . . . . . . . . . 117
ァ2 Singularities and Branching of Integrals . . . . . . . . . . . . . . . 125
ァ3 Picard–Fuchs Equations . . . . . . . . . . . . . . . . . . . . . . . . 128
ァ4 Gauss–Manin Connection . . . . . . . . . . . . . . . . . . . . . . . 140
ァ5 Oscillating Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6 Vector Fields and Abelian Integrals 159
ァ1 Phase Portraits of Vector Fields . . . . . . . . . . . . . . . . . . . . 159
ァ2 Method of Abelian Integrals . . . . . . . . . . . . . . . . . . . . . . 164
ァ3 Quadratic Centers and Bautin’s Theorem . . . . . . . . . . . . . . 189
vi Contents
7 Hodge Structures and Period Map 195
ァ1 Hodge Structure on AlgebraicManifolds . . . . . . . . . . . . . . . 196
ァ2 Hypercohomologies and Spectral Sequences . . . . . . . . . . . . . 203
ァ3 Mixed Hodge Structures . . . . . . . . . . . . . . . . . . . . . . . . 210
ァ4 Mixed Hodge Structures andMonodromy . . . . . . . . . . . . . . 224
ァ5 PeriodMapping in Algebraic Geometry . . . . . . . . . . . . . . . 252
8 Linear Differential Systems 267
ァ1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
ァ2 Regular Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . 270
ァ3 Irregular Singularities . . . . . . . . . . . . . . . . . . . . . . . . . 279
ァ4 Global Theory of Linear Equations . . . . . . . . . . . . . . . . . . 293
ァ5 Riemann–Hilbert Problem . . . . . . . . . . . . . . . . . . . . . . . 296
ァ6 The Bolibruch Example . . . . . . . . . . . . . . . . . . . . . . . . 307
ァ7 IsomonodromicDeformations . . . . . . . . . . . . . . . . . . . . . 315
ァ8 Relation with QuantumField Theory . . . . . . . . . . . . . . . . 324
9 Holomorphic Foliations. Local Theory 333
ァ1 Foliations and Complex Structures . . . . . . . . . . . . . . . . . . 334
ァ2 Resolution for Vector Fields . . . . . . . . . . . . . . . . . . . . . . 339
ァ3 One-DimensionalAnalytic Diffeomorphisms . . . . . . . . . . . . . 346
ァ4 The Ecalle Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 360
ァ5 Martinet–RamisModuli . . . . . . . . . . . . . . . . . . . . . . . . 366
ァ6 Normal Forms for Resonant Saddles . . . . . . . . . . . . . . . . . 378
ァ7 Theorems of Briuno and Yoccoz . . . . . . . . . . . . . . . . . . . . 381
10 Holomorphic Foliations. Global Aspects 393
ァ1 Algebraic Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
ァ2 Monodromy of the Leaf at Infinity . . . . . . . . . . . . . . . . . . 411
ァ3 Groups of Analytic Diffeomorphisms . . . . . . . . . . . . . . . . . 418
ァ4 The Ziglin Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
11 The Galois Theory 441
ァ1 Picard–Vessiot Extensions . . . . . . . . . . . . . . . . . . . . . . . 441
ァ2 TopologicalGalois Theory . . . . . . . . . . . . . . . . . . . . . . . 471
12 Hypergeometric Functions 491
ァ1 The Gauss Hypergeometric Equation . . . . . . . . . . . . . . . . . 491
ァ2 The Picard–Deligne–MostowTheory . . . . . . . . . . . . . . . . . 515
ァ3 Multiple Hypergeometric Integrals . . . . . . . . . . . . . . . . . . 527
Bibliography 537
Index 559