Editorial Preface xi
Wave Maps and Ill-posedness of their Cauchy Problem
Piero D’Ancona and Vladimir Georgiev 1
1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Variational motivation of the wave maps equations . . . . . . . . . 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Harmonic maps and special harmonic maps on the sphere . 6
2.3 Equivariant wave maps and construction of special solutions 12
3 Local existence result for equivariant wave maps . . . . . . . . . . 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Localization in time . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Estimates for the homogeneous problem . . . . . . . . . . . 24
3.4 Estimates for the non-homogeneous problem . . . . . . . . 26
3.5 Bilinear estimates for the homogeneous problem in Hs,δ . . 31
3.6 Bilinear estimates in Hs,δ for the inhomogeneous problem . 36
4 Concentration of the local energy . . . . . . . . . . . . . . . . . . . 40
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Construction of the solutions . . . . . . . . . . . . . . . . . 42
4.3 Higher regularity of the solution . . . . . . . . . . . . . . . 46
4.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5 Non-uniqueness result in the subcritical case . . . . . . . . . . . . . 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Equivariant and self-similar solutions . . . . . . . . . . . . . 57
5.3 Low regularity self-similar solutions . . . . . . . . . . . . . 60
5.4 Appendix A: The self-similar ODE . . . . . . . . . . . . . . 66
5.5 Appendix B: Some technical lemmas . . . . . . . . . . . . . 72
6 Ill-posedness in the critical case (Fourier analysis approach) . . . . 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Well-posedness of the Cauchy problem for semilinear wave
equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
vi Contents
6.3 The wave map system in stereographic projection . . . . . . 80
6.4 Conclusion of the proof of Theorem 6.1 . . . . . . . . . . . 83
6.5 Proof of Theorem6.2 . . . . . . . . . . . . . . . . . . . . . 86
7 Ill-posedness in the critical case (fundamental solution approach) . 90
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Proof of Theorem7.1 . . . . . . . . . . . . . . . . . . . . . 92
7.3 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
On the Global Behavior of Classical Solutions to Coupled Systems of
Semilinear Wave Equations
Hideo Kubo and Masahito Ohta 113
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2 Single wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.1 Blow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.2 Small data global existence . . . . . . . . . . . . . . . . . . 125
2.3 Almost global existence . . . . . . . . . . . . . . . . . . . . 133
2.4 Self-similar solution . . . . . . . . . . . . . . . . . . . . . . 137
2.5 Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . 140
3 Semilinear system, I . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.1 Blow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.2 Small data global existence . . . . . . . . . . . . . . . . . . 163
3.3 Self-similar solution . . . . . . . . . . . . . . . . . . . . . . 166
3.4 Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . 167
4 Semilinear system, II . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.1 Small data global existence . . . . . . . . . . . . . . . . . . 170
4.2 Self-similar solution . . . . . . . . . . . . . . . . . . . . . . 173
4.3 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . 176
5 Semilinear system, III . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.1 Blow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.2 Small data global existence . . . . . . . . . . . . . . . . . . 183
6 Nonlinear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.1 Blow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.2 Null condition . . . . . . . . . . . . . . . . . . . . . . . . . 196
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Decay and Global Existence for Nonlinear Wave Equations with
Localized Dissipations in General Exterior Domains
Mitsuhiro Nakao 213
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Contents vii
3 Local energy decay . . . . . . . . . . . . . . . . . . . . . . . . . . 218
3.1 Problemand result . . . . . . . . . . . . . . . . . . . . . . . 218
3.2 Proof of Theorem3.1. . . . . . . . . . . . . . . . . . . . . . 219
3.3 Proof of Corollary 3.1. . . . . . . . . . . . . . . . . . . . . . 223
4 Total Energy decay for the wave equation with a localized dissipation226
4.1 Problemand result . . . . . . . . . . . . . . . . . . . . . . . 226
4.2 Proof of Theorem4.1 . . . . . . . . . . . . . . . . . . . . . 227
4.3 Proof of Theorem4.2 . . . . . . . . . . . . . . . . . . . . . 232
5 Linear equations with variable coefficients; Unique continuation property
and a basic inequality . . . . . . . . . . . . . . . . . . . . . . . 233
5.1 Problemand result . . . . . . . . . . . . . . . . . . . . . . . 233
5.2 Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . 235
5.3 Proof of Theorems 5.1 and 5.2 . . . . . . . . . . . . . . . . 237
5.4 Proof of Proposition 5.2 . . . . . . . . . . . . . . . . . . . . 239
6 Lp estimates for the wave equation in exterior domains . . . . . . . 241
6.1 Problemand result . . . . . . . . . . . . . . . . . . . . . . . 241
6.2 Proof of Theorem6.2 . . . . . . . . . . . . . . . . . . . . . 243
7 Semilinear wave equations . . . . . . . . . . . . . . . . . . . . . . . 249
7.1 Problemand result . . . . . . . . . . . . . . . . . . . . . . . 249
7.2 Proof of Theorems 7.1 and 7.2 . . . . . . . . . . . . . . . . 251
7.3 Proof of Theorem7.3 . . . . . . . . . . . . . . . . . . . . . 253
8 Quasilinear wave equations . . . . . . . . . . . . . . . . . . . . . . 259
8.1 Problemand result . . . . . . . . . . . . . . . . . . . . . . . 259
8.2 Energy decay for the quasilinear equation . . . . . . . . . . 261
8.3 Estimation of higher-order derivatives of solutions . . . . . 265
8.4 Proof of Theorems 8.2 and 8.3. . . . . . . . . . . . . . . . . 272
9 The wave equation with a half-linear dissipation . . . . . . . . . . 280
9.1 Problemand result . . . . . . . . . . . . . . . . . . . . . . . 280
9.2 A basic inequality . . . . . . . . . . . . . . . . . . . . . . . 283
9.3 Proof of Theorem9.1 . . . . . . . . . . . . . . . . . . . . . 286
9.4 Proof of Theorems 9.2 and 9.3 . . . . . . . . . . . . . . . . 289
10 Some open problems . . . . . . . . . . . . . . . . . . . . . . . . . . 293
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Global Existence in the Cauchy Problem for Nonlinear Wave Equations with
Variable Speed of Propagation
Karen Yagdjian 301
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
2 Counterexamples to the global existence . . . . . . . . . . . . . . . 303
3 Blow-up for the problem with large potential energy of nonlinearity 320
4 Parametric resonance and wave map type equations . . . . . . . . 324
viii Contents
5 Proof of Theorem 4.1: Parametric resonance . . . . . . . . . . . . . 327
5.1 Some properties of the Hill’s equation . . . . . . . . . . . . 327
5.2 Borg’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 334
5.3 Construction of an exponentially increasing solution to Hill’s
equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
5.4 Construction of blow-up solutions . . . . . . . . . . . . . . 342
6 Coefficient stabilizing to a periodic one. Parametric resonance dominates
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
7 Proof of Theorem 6.1: Perturbation theory . . . . . . . . . . . . . . 345
8 Nonexistence for equations with permanently restricted domain of
influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
9 Global existence for a model equation with a polynomially growing
coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
10 An example with an exponentially growing coefficient . . . . . . . 362
11 Fast oscillating coefficients: no resonance ?! . . . . . . . . . . . . . 370
12 Linear wave equations with oscillating coefficients . . . . . . . . . . 373
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
On the Nonlinear Cauchy Problem
Massimo Cicognani and Luisa Zanghirati 387
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
2 Well-posedness in C∞ . . . . . . . . . . . . . . . . . . . . . . . . . 392
2.1 Function and symbol spaces . . . . . . . . . . . . . . . . . . 392
2.2 Levi conditions . . . . . . . . . . . . . . . . . . . . . . . . . 394
2.3 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . 397
2.4 The linear problem . . . . . . . . . . . . . . . . . . . . . . . 398
2.5 Commutators . . . . . . . . . . . . . . . . . . . . . . . . . . 403
2.6 The equivalent quasilinear system . . . . . . . . . . . . . . 407
2.7 Local C∞ solutions . . . . . . . . . . . . . . . . . . . . . . . 409
2.8 Analytic regularity . . . . . . . . . . . . . . . . . . . . . . . 410
3 Well-posedness in Gevrey classes . . . . . . . . . . . . . . . . . . . 416
3.1 The linear problem . . . . . . . . . . . . . . . . . . . . . . . 416
3.2 Gevrey-Levi conditions . . . . . . . . . . . . . . . . . . . . 419
3.3 Factorization under Gevrey-Levi conditions . . . . . . . . . 422
3.4 Linear systems . . . . . . . . . . . . . . . . . . . . . . . . . 423
3.5 The equivalent quasilinear system in Gevrey spaces . . . . . 427
3.6 Local Gevrey solutions and propagation of the analytic regularity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
4 Strictly hyperbolic equations with non-Lipschitz coefficients and
C∞ solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
4.1 Log-Lipschitz coefficients or unbounded derivatives . . . . . 430
4.2 The linear problem with non-regular coefficients . . . . . . 432
4.3 The map u → v . . . . . . . . . . . . . . . . . . . . . . . . . 436
Contents ix
5 H¨older coefficients and Gevrey Solutions . . . . . . . . . . . . . . . 441
5.1 Gevrey well-posedness . . . . . . . . . . . . . . . . . . . . . 441
5.2 From the factorization to the quasilinear system . . . . . . 442
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Sharp Energy Estimates for a Class of Weakly Hyperbolic Operators
Michael Dreher and Ingo Witt 449
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
1.1 Well-posedness of the Cauchy problem . . . . . . . . . . . . 450
1.2 Degenerate differential operators . . . . . . . . . . . . . . . 451
1.3 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
2 Formulation of the results . . . . . . . . . . . . . . . . . . . . . . . 455
2.1 Motivation and plan of the paper . . . . . . . . . . . . . . . 455
2.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
3 Amodel case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
3.1 Taniguchi–Tozaki’s example . . . . . . . . . . . . . . . . . . 463
3.2 Conversion into a 2 ×2 system . . . . . . . . . . . . . . . . 464
3.3 Estimation of the fundamental matrix . . . . . . . . . . . . 464
3.4 Function spaces: An approach via edge Sobolev spaces . . . 465
3.5 Establishing energy estimates . . . . . . . . . . . . . . . . . 470
3.6 Summary of Section 3 . . . . . . . . . . . . . . . . . . . . . 470
4 Symbol classes and function spaces . . . . . . . . . . . . . . . . . . 471
4.1 The symbol classes Sm,η;λ . . . . . . . . . . . . . . . . . . . 471
4.2 The symbol classes ˜ Sm,η;λ . . . . . . . . . . . . . . . . . . . 472
4.3 The symbol classes Sm,η;λ
+ for η ∈ C∞b (Rn;R) . . . . . . . . 474
4.4 Function spaces: An approach via weight functions . . . . . 475
4.5 Summary of Section 4 . . . . . . . . . . . . . . . . . . . . . 478
5 The Cauchy problem . . . . . . . . . . . . . . . . . . . . . . . . . . 478
5.1 Improvement of G˚arding’s inequality . . . . . . . . . . . . . 480
5.2 Symmetric-hyperbolic systems . . . . . . . . . . . . . . . . 481
5.3 Symmetrizable-hyperbolic systems . . . . . . . . . . . . . . 483
5.4 Higher-order scalar equations . . . . . . . . . . . . . . . . . 487
5.5 Local uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 489
5.6 Sharpness of energy estimates . . . . . . . . . . . . . . . . . 491
A Supplements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
B Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507