You are here

Symmetry: Representation Theory and Its Applications

Roger Howe, Markus Hunziker, and Jeb F. Willenbring, editors
Publisher: 
Birkhäuser
Publication Date: 
2015
Number of Pages: 
538
Format: 
Hardcover
Series: 
Progress in Mathematics 257
Price: 
149.00
ISBN: 
9781493915897
Category: 
Festschrift
We do not plan to review this book.

Preface.- Publications of Nolan R. Wallach.- Unitary Hecke algebra modules with nonzero Dirac cohomology.- On the nilradical of a parabolic subgroup.- Arithmetic invariant theory.- Structure constants of Kac-Moody Lie algebras.- The Gelfand-Zeitlin integrable system and K-orbits on the flag variety.- Diagrams of Hermitian type, highest weight modules, and syzygies of determinantal varieties.- A conjecture of Sakellaridis-Venkatesh on the unitary spectrum of spherical varieties.- Proof of the 2-part compositional shuffle conjecture.- On symmetric SL-invariant polynomials in four qubits.- Finite maximal tori.- Sums of Littlewood–Richardson coefficients and GLn-harmonic polynomials.- Polynomial functors and categorifications of Fock space.- Pieri algebras and Hibi algebras in representation theory.- Action of the conformal group on steady state solutions to Maxwell’s equations and background radiation.- Representations with a reduced null cone.- M-series and Kloosterman–Selberg zetafunctions for R-rank one groups.- Ricci flow and manifolds with positive curvature.- Remainder formula and zeta expression for extremal CFT partition functions.- Principal series representations of infinite-dimensional Lie groups, I: Minimal parabolic subgroups.