You are here

Peano on Wronskians: A Translation - References

Author(s): 
Susannah M. Engdahl (Wittenberg University) and Adam E. Parker (Wittenberg University)

[BD] A. Bostan and P. Dumas, Wronskians and linear independence, Amer. Math. Monthly 117 (2010), 722-727.

[B1] M. Bocher. On linear dependence of functions of one variable, Bull. Amer. Math. Soc. 7 (1900) 120-121. Available from American Mathematical Society:
http://www.ams.org/journals/bull/1900-07-03/S0002-9904-1900-00771-3/S0002-9904-1900-00771-3.pdf

[B2] M. Bocher. The theory of linear dependence, Ann. of Math. (2) 2 (1900/1901) 81-96. Available from JSTOR.

[B3] M. Bocher. Certain cases in which the vanishing of the Wronskian is a sufficient condition for linear dependence, Trans. Amer. Math Soc. 2 (1901) 139-149. Available from American Mathematical Society:
http://www.ams.org/journals/tran/1901-002-02/S0002-9947-1901-1500560-5/S0002-9947-1901-1500560-5.pdf

[B4] M. Bocher. On Wronskians of functions of a real variable. Bull. Amer. Math. Soc. 8 (1901) 53-63. Available from American Mathematical Society:
http://www.ams.org/journals/bull/1901-08-02/S0002-9904-1901-00852-X/S0002-9904-1901-00852-X.pdf

[C] D.R. Curtiss, The vanishing of the Wronskian and the problem of linear dependence, Math. Ann. 65 (1908) 282-298. Available from Göttingen State and University Library via Göttinger Digitalisierungszentrum (GDZ) and Deutsche Digitale Zeitschriftenarchiv (DigiZeitschriften):
http://resolver.sub.uni-goettingen.de/purl?GDZPPN002262010

[JMHW] J.M. Hoene-Wronski, Réfutation de la théorie des fonctions analytiques de Lagrange, Blankenstein, Paris, 1812.

[H] M. Ch. Hermite, Cours d’analyse de l’école polytechnique, premiere partie, Gauthier-Villars, Paris (1873) 132-134. Available from Internet Archive Open Library:
http://www.archive.org/stream/coursdanalysedel01hermuoft#page/132/mode/2up

[J] M. C. Jordan, Cours d’analyse de l’école polytechnique, tome troisieme, Gauthier-Villars, Paris (1887) 149-152. Available from Google Books.

[K] M. Krusemeyer, The teaching of mathematics: Why does the Wronskian work? Amer. Math. Monthly 95 (1988) 46-49. Available from JSTOR.

[L] H. Laurent, Traité d’analyse, tome I, Gauthier-Villars, Paris (1885), 183-184. 

[PM] P. Mansion, Résumé du course d’analyse infinitésimale de l’université de Gand, Gauthier-Villars, Paris (1887) 100-102. Available from Google Books.

[TM] T. Muir, A treatise on the theory of determinants, Macmillan, London, 1882; reprinted by Dover, New York, 1960. Also available from Google Books.  

[P1] G. Peano, Sur le déterminant Wronskien, Mathesis 9 (1889) 75-76.

[P2] G. Peano, Sur les Wronskiens, Mathesis 9 (1889) 110-112.

[P3] G. Peano, Sul determinante Wronskiano, Rend. Accad. Lincei, (5) 6 (1897) 413-415.

[PP] P. Pragacz, Notes on the life and work of Józef Maria Hoene-Wronski, Ann. Soc. Math Pol. 43 (2007). Translated by Jan Spalinski in Algebraic cycles, sheaves, shtukas, and moduli, “Trends in Mathematics,” Birkhauser, Basel, 2007, 1-20.

[V] G. Vivanti, Sul determinante wronskiano, Rend. Accad. Lincei, (5) 7 (1898), 194-197.

Susannah M. Engdahl (Wittenberg University) and Adam E. Parker (Wittenberg University), "Peano on Wronskians: A Translation - References," Convergence (April 2011), DOI:10.4169/loci003642