Preface ix
Introduction 1
Chapter 1: Leonhard Euler and His Three "Great" Friends 10
Chapter 2: What Is a Polyhedron? 27
Chapter 3: The Five Perfect Bodies 31
Chapter 4: The Pythagorean Brotherhood and Plato's Atomic Theory 36
Chapter 5: Euclid and His Elements 44
Chapter 6: Kepler's Polyhedral Universe 51
Chapter 7: Euler's Gem 63
Chapter 8: Platonic Solids, Golf Balls, Fullerenes, and Geodesic Domes 75
Chapter 9: Scooped by Descartes? 81
Chapter 10: Legendre Gets It Right 87
Chapter 11: A Stroll through Königsberg 100
Chapter 12: Cauchy's Flattened Polyhedra 112
Chapter 13: Planar Graphs, Geoboards, and Brussels Sprouts 119
Chapter 14: It's a Colorful World 130
Chapter 15: New Problems and New Proofs 145
Chapter 16: Rubber Sheets, Hollow Doughnuts, and Crazy Bottles 156
Chapter 17: Are They the Same, or Are They Different? 173
Chapter 18: A Knotty Problem 186
Chapter 19: Combing the Hair on a Coconut 202
Chapter 20: When Topology Controls Geometry 219
Chapter 21: The Topology of Curvy Surfaces 231
Chapter 22: Navigating in n Dimensions 241
Chapter 23: Henri Poincaré and the Ascendance of Topology 253
Epilogue The Million-Dollar Question 265
Acknowledgements 271
Appendix A Build Your Own Polyhedra and Surfaces 273
Appendix B Recommended Readings 283
Notes 287
References 295
Illustration Credits 309
Index 311